期刊文献+

矩形管道内驻波声流的数值模拟 被引量:3

Numerical simulation for acoustic streaming with standing wave in a rectangular pipe
在线阅读 下载PDF
导出
摘要 基于边界层理论,建立边界速度数学模型研究矩形管道中Rayleigh声流现象。此数学模型采用3阶的谱元方法求解,驻波声场对流体流动的影响采用壁面处的声边界速度来表达,同时引入雷诺数来分析非线性项和黏性项的重要性。数值结果表明:在2维和3维情况下,声边界速度模型均与近似解相符。声边界速度模型和近似解的差异来源于对非线性项的处理。与近似解相比,声边界速度模型的优势在于能考虑流体流动的非线性效应且仅要求矩形管道的特征尺寸的2倍小于波长。在2维情况下,回流区的涡心位于管道高度的1/4;而在3维情况下,回流区的涡心则靠近壁面。在壁面附近,非线性项的影响不能忽略;而在上下2个涡心的中间位置,非线性项比黏性项更加重要。 Based on the boundary-layer theory, a mathematical model about acoustic boundary-velocity was developed to investigate Rayleigh acoustic streaming in a rectangular pipe. The governing equations were solved by a three-order spectral element method, and the effect of standing acoustic wave on the fluid flow was described by the acoustic boundary-velocity near the wall. Further, Reynolds number was introduced to compare the importance of the nonlinear term with that of the viscous term. Numerical results show that the predicted fluid flow by the acoustic boundary-velocity model conforms with the approximate solution. And the difference between the acoustic boundary-velocity model and the approximate solution comes from the treatment for the nonlinear term. Compared with the approximate solution, the acoustic boundary-velocity model has two advantages. The first advantage is that it considers the nonlinear effect of fluid flow, and the second is that the characteristic length of rectangular pipe is only less than half of the wavelength. On the two-dimensional condition, the center of the circulation zone is near a quarter of height of the pipe. But on the three-dimension condition, the center of the circulation zone is close to the wall. Near the wall, the effect of the nonlinear term can not be ignored. And in the middle of the vortex center for the upper and lower recirculation zones, the effect of the nonlinear term is more important than that of the viscous term.
作者 雷洪 赫冀成
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第12期4683-4687,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金 上海宝钢集团公司联合资助项目(50834010) 中央高校基本科研业务费资助项目(N100409007) 高等学校学科创新引智计划项目(B07015)
关键词 Rayleigh声流 驻波 声边界速度 非线性效应 雷诺数 Rayleigh acoustic streaming standing wave acoustic boundary-velocity nonlinear effect Reynolds number
作者简介 通信作者:雷洪(1973-),男,湖北武汉人,博士,教授,从事钢的精炼连铸和夹杂物的研究;电话:024-83684941:E-mail:leihong@epm.neu.edu.cn.
  • 相关文献

参考文献17

  • 1白晓清,张林,李东辉,赫冀成.超声波对流动液体中夹杂物去除效果的实验研究[J].东北大学学报(自然科学版),2002,23(4):348-351. 被引量:9
  • 2胡仕成,夏晨希,邵高建,管付如.铝熔体中超声声流的数值模拟[J].铸造技术,2010,31(12):1609-1613. 被引量:5
  • 3谢恩华,李晓谦.超声波熔体处理过程中的声流现象[J].北京科技大学学报,2009,31(11):1425-1429. 被引量:16
  • 4Kuznetsova L A, Coakley W T. Applications of ultrasound streaming and radiation force in biosensors[J]. Biosensors and Bioelectronics, 2007, 22(8): 1567-1577.
  • 5Alassar R S. Acoustic streaming on spheres[J]. International Journal of Non-Linear Mechanics, 2008, 43(9): 892-897.
  • 6Dridi W, Henry D, Benhadid H. Influence of acoustic streamingon the stability or melt flows in horizontal Bridgman configurations[J]. Journal of Crystal Growth, 2008, 310(7): 1546-1551.
  • 7Nabavi M, Siddiqui K, Dargahi J. Influence of differentially heated horizontal walls on the streaming shape and velocity in a standing wave resonator[J]. International Communications in Heat and Mass Transfer, 2008, 35(9): 1061-1064.
  • 8Nabavi M, Siddiquia K, Dargahia J. Analysis of regular and irregular acousticstreaming patterns in a rectangular enclosure[J]. Wave Motion. 2009, 48(5): 312-322.
  • 9Arroyo M P, Greated C A. Stereoscopic particle image velocimetry[J]. Measurement Science & Technology, 1991,2(12):1181-1186.
  • 10Perelomova A. Driving force of acoustic streaming caused by aperiodic sound beam in unbounded volumes[J]. Ultrasonics, 2009, 49(6): 583-587.

二级参考文献50

  • 1范金辉,翟启杰.物理场对金属凝固组织的影响[J].中国有色金属学报,2002,12(z1):11-17. 被引量:66
  • 2马立群,舒光冀,陈锋.金属熔体在超声场中凝固的研究[J].材料科学与工程,1995,13(4):2-7. 被引量:65
  • 3藤本武彦.新表面活性剂入门[M].北京:化学工业出版社,1989.130.
  • 4Eskin G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason Sonochem, 2001, 8(3) :319.
  • 5Liu X, Osawa Y, Takamori S, et al. Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Mater SciEngA, 2008, 487(1):120.
  • 6Eskin G I. Principles of ultrasonic treatment application for light alloys melts. AdvPerform Mater, 1997, 4:223.
  • 7Li Y L, Fang H K, Cao F R, et al. Effect of high density ultrasonic on the microstructure and refining property of Al-5Ti-0.25C grain refiner alloy. Mater Sci Eng A, 2008, 487(2) :518.
  • 8Jian X, Xu H, Meek T T, et al. Effect of power ultrasound on solidification of aluminum A356 alloy. Mater Lett, 2005, 59 (2) : 190.
  • 9Han Y, Li K, Wang J, et al. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-IB master alloy on aluminium. Mater Sci Eng A, 2005, 405 : 306.
  • 10Kumar A, Kumaresan T, Pandit A B, et al. Characterization of flow phenomena induced by ultrasonic horn. Chem Eng Sci, 2006, 61:7410.

共引文献29

同被引文献38

  • 1王玮,浦群,林同骥.低Re数偏心圆柱间定常整流流动[J].水动力学研究与进展(A辑),1993,8(2):172-175. 被引量:2
  • 2浦群,李堃,王玮.小振幅振荡圆柱域内部的定常整流旋涡流动[J].空气动力学学报,1994,12(3):350-354. 被引量:1
  • 3浦群,王玮.小振幅振动圆柱在偏心圆域中诱导的二次定常旋涡流动[J].空气动力学学报,1997,15(1):81-86. 被引量:3
  • 4Rayleigh L. On the circulation of air observed in Kundt's tubes, and on some allied acoustical problems. Philosophical Transactions of the Royal Society of London, 1884; 175:1-21.
  • 5Westerveh P J. The theory of steady rotational flow generated by a sound field. The Journal of the Acoustical Society of America, 1953 ; 25 ( 1 ) : 60-67.
  • 6Nyborg W L. Acoustic streaming due to attenuated plane waves. The Journal of the Acoustical Society of America, 1953 ; 25 ( 1 ) : 68-75.
  • 7Schlichting H, Gersten K. Boundary-layer theory. Berlin:Springer Science & Business Media, 2003:48-89.
  • 8Hamilton M F, Ilinskii Y A, Zabolotskaya E A. Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. The Journal of the Acoustical Society of America, 2003; 113 ( 1 ) : 153-160.
  • 9Nabavi M, Siddiqui K, Dargahi J, Analysis of regular and irregular acoustic streaming patterns in a rectangular enclosure. Wave Motion, 2009; 46(5) : 312-322.
  • 10Vainshtein P, Fichman M, Gutfinger C. Acoustic enhancement of heat transfer between two parallel plates. International Journal of Heat and Mass Transfer, 1995; 38(10) : 1893-1899.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部