期刊文献+

基于两阶段学习的半监督SVM故障检测方法 被引量:4

Fault detection based on two-stage learning and semi-supervised SVM
在线阅读 下载PDF
导出
摘要 提出一种基于两阶段学习的半监督SVM故障检测方法。该方法首先使用标识传递算法给未标识样本赋予初始伪标识,并通过k近邻图对比样本点标识值,将可能是噪声的样本点识别并剔除;然后将去噪处理后的样本集输入到SVM中,使得SVM在训练时能兼顾整个样本集的信息,从而提高SVM的故障检测性能。实验中将该方法同支持向量机(SVM)、模糊支持向量机(FSVM)、直推式支持向量机(TSVM)及拉普拉斯支持向量机算法(LapSVM)进行比较,结果表明该方法在不同数目标识样本集合的情况下,检测精度较其他算法有较大幅度提高,同时该方法还比较了不含测试样本和含测试样本训练条件下的故障检测性能,结果表明结合测试样本可进一步提高算法的故障检测性能。 A novel semisupervised support vector machine fault detection model based on twostage learning was presented here. First of all, propagation algorithm was used to provide pseudo labels for unlabeled samples. Secondly, k nearneighbor graph was utilized to distinguish and delete the noisy samples. Then, the denoised samples were input into a support vector machine(SVM) so that the global information of the whole sample set could be considered by the SVM to enhance its fault detection ability. The comparisons among support vector machine, fuzzy support vector machine, transductive support vector machine and Laplacian support vector machine fault detection algorithms were performed. The results showed that the proposed approach has a more substantial detection accuracy than other algorithms with different labeled sample sets. The behaviors of the proposed fault detection method with test samples and without those were compared. The results illustrated that the proposed method with test samples can further raise its ability to detect faults.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第23期39-43,56,共6页 Journal of Vibration and Shock
基金 国家自然科学基金面上项目(61074076) 中国博士后科学基金(20090450119) 中国博士点新教师基金(20092304120017) 黑龙江省博士后基金(LBH-Z08227) 黑龙江省教育厅项目(11555009)
关键词 故障检测 半监督 两阶段 伪标识 fault detection semi-supervised two-stage pseudo labels
作者简介 第一作者 陶新民 男,博士,副教授,1973年生
  • 相关文献

参考文献15

二级参考文献49

共引文献169

同被引文献41

  • 1ZHAO Xiukuan, LI Min, XU Jinwu, et al. An effective procedure exploiting unlabeled data to build monitoring system[J]. Expert Systems with Application, 2011, 38(8): 10199-10204.
  • 2Tenenbaum J B, Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290: 2319-2323.
  • 3Seung H S, Daniel D L. The manifold ways of perception[J]. Science, 2000, 290: 2268-2269.
  • 4Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290: 2323-2326.
  • 5JIE Gui, WEI Jia, LING Zhu, et al. Locality preserving discriminant projections for face and palm print recognition[J]. Neurocomputing, 2010, 73: 2696-2707.
  • 6ZHANG Limei, QIAO Lishan, CHEN Songcan. Graph-optimized locality preserving projections[J]. Pattern Recognition, 2010, 43: 1993-2002.
  • 7廖东平,魏玺章,黎湘,庄钊文.一种改进的渐进直推式支持向量机分类学习算法[J].信号处理,2008,24(2):213-218. 被引量:11
  • 8薛贞霞,刘三阳,刘万里.基于可信度的渐进直推式支持向量机算法[J].厦门大学学报(自然科学版),2008,47(6):806-811. 被引量:2
  • 9薛贞霞,刘三阳,刘万里.改进的渐进直推式支持向量机算法[J].系统工程理论与实践,2009,29(5):142-148. 被引量:7
  • 10彭新俊,王翼飞.双模糊渐进直推式支持向量机算法[J].模式识别与人工智能,2009,22(4):560-566. 被引量:9

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部