期刊文献+

结合多分类器的遥感影像分类方法研究 被引量:2

Integration of Multiple Classifiers for Remote Sensing Image Classification
在线阅读 下载PDF
导出
摘要 以提高遥感影像分类精度为研究目的,以Matlab 7.0作为实验平台,利用7种单分类器分别在测量级和抽象级上进行多分类器结合的方法研究,并进行实验验证。其中针对在非监督分类中后验概率计算时的类别中心确定问题,本文在分类结束后重新计算各个类别特征的平均值作为类别中心。本文还对投票法进行了改进,通过比较各个类别后验概率之和的方法解决多个类别同时为得票最高类别时的像元类别归属问题,并对实验结果进行精度评价和分析。结果表明多分类器结合方法对单分类器的总体分类精度有一定程度的提高。 In order to improve the classification accuracy,this paper performed multiple classifier integration at Abstract level and measurement level by using MATLAB 7.0 software,and seven classifiers were studied.To determine the class center when calculating posteriori probability in unsupervised classification,the average of characteristics was recalculated as the class center after classification.The method of voting has been improved.By comparing the sum of the posterior probability of each class,the problem of determining to which class a certain pixel belongs when more than one class win the highest number of votes was also solved.By accuracy assessment,it showed that the proposed method can effectively improve the overall classification accuracy.
出处 《遥感信息》 CSCD 2012年第6期17-20,共4页 Remote Sensing Information
基金 中国测绘科学研究院基本科研业务费重点项目课题7771016
关键词 多种分类器结合 后验概率 精度评价 multiple classifier integration posterior probability accuracy assessment
作者简介 杨斌(1986-)男,硕士,主要研究方向遥感信息提取。E-mall:yang_bin0909@126.com
  • 相关文献

参考文献8

  • 1柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报,2005,9(5):555-563. 被引量:61
  • 2PAL M, MATHER P M. An assessment of the effectiveness of decision tree methods for land cover classsification[J]. Re- mote Sensing of Environment, 2003,86 (4) : 554- 565.
  • 3LU D S,WENG Q H. Spectral mixture annalysis ol the urban landscapes in Indianapolis with Landsat ETMq- imagery [J]. Photogrammetric Engineering and Remote Sensing 2007,70(9) :1053-1062.
  • 4PINZ A,BARTL R. Information fusion in image understanding:LANDSAT classification and ceular fundus images [J]. Sensor Fusion,1992(1828) :276-287.
  • 5WILKINSON G G, FIERENS F, KANELLOPOULOS I. Integration of neural and statistical approaches in spatial data classification[J]. Geographical Systems, 1995 (2) : 1 - 20.
  • 6张秀英,冯学智,刘伟.基于多分类器结合的IKONOS影像城市植被类型识别[J].东南大学学报(自然科学版),2007,37(3):399-403. 被引量:9
  • 7周红英,蔺启忠,吴昀昭,王钦军.基于AdaBoost的组合分类器在遥感影像分类中的应用[J].计算机应用研究,2007,24(10):181-184. 被引量:11
  • 8XU L, KRZYZAK A, SUEN C Y. Methods of combining multiple classifiers and their applications to handwriting recogni- tion[J]. IEEE Transaction on Systems, Man, and Cybernetics, 1992,22 (3) : 418- 435.

二级参考文献44

  • 1柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报,2005,9(5):555-563. 被引量:61
  • 2杨利英,覃征,张选平.分类器模拟算法及其应用[J].西安交通大学学报,2005,39(12):1311-1314. 被引量:3
  • 3Schowengerdt R A. Remote Sensing Models and Methods for Image processing[M]. 2nd Edition, Academic Press, 1997.
  • 4Richards J A. Remote Sensing Digital Image Analysis[M]. 2nd Edition, Springer-Verlag,1998.
  • 5Benediktsson J A, Swain P H, Ersoy O K. Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28:540-552.
  • 6Bischof H, Schneider W, Pinz A J. Multispectral Classification of Landsat Images Using Neural Networks[J]. IEEE Transactions on Geosciences and Remote Sensing, 1992, 30(3):482-490.
  • 7Roli F, Serpico S B, Vernazza G. Neural Networks for Classification of Remotely Sensed Images[A]. Chen C H(Editor). Fuzzy Logic and Neural Network Handbook[C], McGraw-Hill,1996.
  • 8Roli F, Giacinto G, Vernazza G. Comparison and Combination of Statistical and Neural Network Algorithms for Remote Sensing Image Classification[A]. Kanellopoulos, Wilkinson G, Roli F, et al. Neurocomputation in Remote Sensing Data Analysis[C], Springer, 1997.
  • 9Gincinto G, Roli F. Ensembles of Neural Networks for Soft Classification of Remote Sensing Images[C]. Proceeding of the European Symposium on Intelligent Techniques[C], 1997.
  • 10Ghosh J, Tumer K, Beck S, et al. Integration of Neural Classifiers for Passive Sonar Signals[C]. Leondes DSP Theory and Applications[C]. Academic Press, 1995.

共引文献71

同被引文献22

  • 1谢顺平,都金康,王腊春,顾国琴.基于游程编码的GIS栅格数据矢量化方法[J].测绘学报,2004,33(4):323-327. 被引量:33
  • 2黄波,陈勇.矢量、栅格相互转换的新方法[J].遥感技术与应用,1995,10(3):61-65. 被引量:37
  • 3王凯,张永祥,李军.基于支持向量机的齿轮故障诊断方法研究[J].振动与冲击,2006,25(6):97-99. 被引量:32
  • 4李占才,刘春燕.点阵图形矢量化的高效方法——有向边界法[J].计算机应用与软件,1997,14(3):48-51. 被引量:17
  • 5Yang B,Purves R,Weibel R.Efficient transmission of vector data over the internet[J].International Journal of Geographical Information Science,2007,21(2):215-237.
  • 6Rafael C.Gonzalez Richard E.Woods,著.阮秋琦,阮宇智,等译.数字图像处理(第二版)[M].北京:电子工业出版社,2005.
  • 7Pincus S M.Approximate entropy as a measure of system complexity[J].Proc Natl Sci USA,1991,88:2297-2301.
  • 8Richman J S,Moorman J R.Physiological time series analysis using approximate entropy and sample entropy[J].American Journal of Physiology-Heart and Circulatory Physiology,2000,278(6).
  • 9Costa M,Goldberger A L,Peng C K.Multiscale entropy analysis of biological signals[J].Physical Review E,2005,71.
  • 10Costa M,Goldberger A L,Peng C K.Multiscale entropy analysis of complex physiologic time series[J].Physical Review Letter,2002,89(6).

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部