期刊文献+

基于时序SAR技术的采空区上方高速公路变形监测及预测方法 被引量:32

Deformation monitoring and prediction methods for expressway above goaf based on time series SAR technique
在线阅读 下载PDF
导出
摘要 为掌握采空区上方所建高速公路的变形趋势,解决老采空区上方地表变形监测数据较少,不易建立时序沉降预测模型的问题,利用D-InSAR(Differential Interferometric Synthetic Aperture Radar)技术对某高速公路进行了变形监测和分析,同时将其结果同地面实测数据相融合,并以LS-SVM(Least Squares-Support Vector Machine)为基础,建立了采空区上方高速公路变形预计模型,通过实例,验证了模型的正确性。具体过程:处理融合数据为等时间间隔,并将其趋势项去除,对余项进行平稳性、正态性及零均值处理;利用Cao方法计算嵌入维数,建立训练样本集,并进行LS-SVM学习训练;最后,采用训练好的模型对未来地表沉降进行预计。以511号监测点为研究对象,建立滚动预计方法,结果显示其最大下沉绝对误差3 mm,最大相对误差2.2%,取得了较为可靠的预计成果。 In order to obtain the deformation law of expressway above goal, solve not enough monitoring data for aban- doned mine to establish the subsidence prediction models, the fused deformation values of level measure and Differenti- al Interferometric Synthetic Aperture Radar(D-InSAR) technique were used to establish the prediction models based on Least Squares-Support Vector Machine(LS-SVM). The details are as follows:the fused data were processed to get equal-time interval time series deformation values, whose trend items should be rejected, and the residues were pro- cessed by stationary, normality and zero mean;Using Cao method to calculate embedding dimension, and establishing sample set to train LS-SVM model;Finally, using the model to predict the land subsidence in the future. The rolling prediction results of the No. 511 point show that the maximum absolute error of subsidence is 3 mm, maximum relative error is 2.2%. Therefore, the predicting results are reliability.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2012年第11期1841-1846,共6页 Journal of China Coal Society
基金 国家自然科学基金资助项目(41071273) 中央高校基本科研业务费专项资金资助项目(2010QNA21) 国土环境与灾害监测国家测绘局重点实验室开放基金资助项目(LEDM2011B07)
关键词 高速公路 形变监测 D-INSAR LS-SVM 预计 expressway deformation monitoring D-InSAR LS-SVM prediction
作者简介 范洪冬(1981-),男,山东新泰人,讲师。E—mail:cumtfanhd@163.com
  • 相关文献

参考文献13

  • 1Ng A H, Ge L L, Yan Y Q. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia [ J ]. Engineering Geology, 2010,115:1-15.
  • 2Yang C S, Zhang Q, Zhao C Y. Monitoring mine collapse by D-In- SAR [ J ]. Mining Science and Technology (China), 2010,20 ( 5 ) : 696 -700.
  • 3Lauknes T R,Zebker H A, Larsen Y. InSAR deformation time series using an L1 -Norm small-baseline approach [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2010,7 ( 1 ) :536-547.
  • 4Power D, Youden J, English J. InSAR evaluation of landslides insupport of roadway design and realignment[ A]. 2006 IEEE Interna- tional Geoscienee and Remote Sensing Symposium [ C]. Danvers:In- stitute of Electrical and Electronics Engineers, Inc. , 2006:3848- 3851.
  • 5芮勇勤,陈佳艺,丁晓利.基于InSAR与GPS技术的公路采空区变形监测[J].东北大学学报(自然科学版),2010,31(12):1773-1776. 被引量:19
  • 6李培现,谭志祥,闫丽丽,邓喀中.基于支持向量机的概率积分法参数计算方法[J].煤炭学报,2010,35(8):1247-1251. 被引量:41
  • 7李凤明,李宏艳,孙维吉.基于支持向量机的露天矿边坡地表变形预测[J].煤炭学报,2008,33(5):492-495. 被引量:21
  • 8闫志刚,杜培军,郭达志.矿井涌水水源分析的支持向量机模型[J].煤炭学报,2007,32(8):842-847. 被引量:50
  • 9Suykens J A K, Vandewalle J. Least squares support vector ma- chines classifiers[ J]. Neural Network Letters, 1999,19 ( 3 ) :293 - 300.
  • 10Peng Xinjun, Wang Yifei. A normal least squares support vector machine( NLS- SVM ) and its learning algorithm [ J ]. Neurocom- puting,2009,72:3734-3741.

二级参考文献54

共引文献184

同被引文献270

引证文献32

二级引证文献280

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部