摘要
对移动最小二乘近似(MLS)中的基函数进行改进,此近似方案中的基函数采用带权的正交基函数,从而形成一种改进的移动最小二乘近似(IMLS),该近似比现有的移动最小二乘近似有更高的精度和效率,且不会导致系统方程产生病态.IMLS近似与迦辽金法(EFGM)相结合构成了一种改进型无网格迦辽金法(IEFGM),用IEFGM对矩形域和圆域内的稳定热传导问题进行了分析.通过计算实例并编制MATLAB程序表明,该方法是一种收敛快、精度高、简便有效的方法.
This paper presents an improved moving least-square(IMLS) approximation in which the orthogonal function system with a weight function being used as the basis function.The IMLS approximation has a greater computational efficiency and precision than the existing moving least-squares(MLS) approximation,and does not lead to an ill-conditioned system of equations.By combining the element-free Galerkin(EFG) method and the IMLS approximation,an improved element-free Galerkin(IEFG) method for heat conduction is derived.There are two numerical examples that in rectangular and circular domain solved using the IEFG method and that demonstrates the method has a greater computational efficiency and precision,and it is simple and effective.
出处
《郑州大学学报(工学版)》
CAS
北大核心
2012年第6期71-74,共4页
Journal of Zhengzhou University(Engineering Science)
基金
秦皇岛市科技攻关计划项目(201001A035)
关键词
移动最小二乘近似
无网格迦辽金法
温度场
moving least-squares approximation(MLS)
element-free Galerkin(EFG) method
temperature field
作者简介
夏茂辉(1963-),男,河北秦皇岛人,燕山大学教授,博士,主要研究方向为无网格法,E—mail:zhizihua666@126.com.