期刊文献+

基于数字图像视觉特征自动检测超声图像中胎儿颈项透明层 被引量:2

Digital image visual feature-based automatic measurement of nuchal translucency of fetus in ultrasound images
原文传递
导出
摘要 目的利用计算机技术设计一种基于数字图像视觉特征的超声图像中胎儿颈项透明层(NT)的自动检测方法。方法建立基于数字图像视觉特征自动检测超声图像中胎儿NT的方法,包括胎儿超声图像提取、连通分量提取、目标检测和NT测量的实现共4个主要步骤。评价标准实验图像(n=35)、临床挑选图像(n=1208)和人工已标注图像(n=120)3组图像采用自动检测方法进行NT测量的实验结果,包括其定位准确性和测量误差,并记录最大误差值。结果应用自动检测方法检测标准实验图像、临床挑选图像和人工已标注图像中胎儿NT的定位准确率分别为100%(35/35)、90.7%(1096/1208)、90.8%(109/120),NT的测量误差均小于0.03mm。结论成功建立了基于数字图像视觉特征自动检测超声图像中胎儿NT的方法,可减少人工测量的主观性和随机性,提高超声筛查的准确性。 Objective To design an approach for automatic detection of nuchal translucency(NT) of fetus in ultrasound images based on digital image visual features via computer technology. Methods The established approach for digital image visual feature-based automatic detection of NT of fetus in ultrasound images consisted of image retrieval, connected component extraction, target assessment and measurement of NT. Results of automatic NT measurement were obtained from standard experimental images(n=35), clinically screened images (n=1208) and artificially marked images (n=120). The accuracy and bias of positioning were examined and maximal errors were recorded. Results The accuracy of NT positioning was 100% (35/35), 90.7% (1096/1208) and 90.8% (109/120) corresponding to standard experimental images, clinically screened images and artificially marked images via automatic measurement respectively. An error of less than 0.03 mm was found. Conclusion The approach for automatic measurement of NT of fetus in ultrasound images based on digital image visual feature is successful established, which can reduce the subjectivity and randomness of manual operation and improve accuracy of ultrasound screening.
出处 《中华生物医学工程杂志》 CAS 2012年第5期348-352,共5页 Chinese Journal of Biomedical Engineering
基金 广东省科技计划项目(20098030801177)
关键词 图像处理 计算机辅助 超声检查 产前 唐氏综合征 颈项透明层 Image processing, computer-assisted Uhrasonography, prenatal Down syndrome Nuchal translucency
作者简介 通信作者:丁红,Email:dd20032003@yahoo.cn
  • 相关文献

参考文献9

二级参考文献41

  • 1谢红宁.胎儿出生缺陷超声检查的形态学基础[J].中国实用妇科与产科杂志,2005,21(9):534-536. 被引量:22
  • 2[8]Diez FJ, Mira J, Iturralde E, et la. DIAVAL,a Bayesian expert system for echocardiography. Artif Intell Med, 1997;10∶59
  • 3[9]Korver M, Lucas PJ. Cinverting a rule-based expert system into a belief network. MED inform Lond,1993; 18∶219
  • 4[10]Wolfram DA. Amappraisal if Internist-1. Artif Intell Med, 1995;7∶93
  • 5[11]Piraino D,Richmond B,Schluchter M,et al. Radiology image interpretation system:modified observer performance study of an image interpretation expert system. J Digital Image, 1991;4∶94
  • 6[12]Rao AR, Jain R: Knowledge representation and control in computer vision systems. IEEE Expert, 1988;3∶64
  • 7[13]Kofakis P, Orphanoudakis S. Image indexing by context. In: Osteaux M, bakker AR, Bell D, eds. A second generation PACS concept.Berlin:Springler-Verlag,pp.511-513,1992
  • 8[14]Yuji Ukai, Noboru Niki, Hitoshi Satoh,et al. A coronary calcification diagnosis system based on helical CT images. IEEE Transactions on Nuclear Science, 1998;45(6)∶3083
  • 9[15]Doi K, Giger ML, Nishikawa RM, et al. Digital radiography: a useful clinical tool for computer-aided diagnosis by quantitative analysis of radiographic images. Acta Radiologica, 1993;34∶426
  • 10[16]Uppaluri R, Mitsa T, Simka M, et al. Quantification of pulmonary emphysema from lung computed tomography images. Am J Respir Crit Care 1997;156∶248

共引文献120

同被引文献22

  • 1谢红宁,朱云晓,李丽娟,方群.胎儿鼻骨超声测量对染色体异常的诊断价值[J].中华围产医学杂志,2006,9(2):89-92. 被引量:43
  • 2周启昌,彭清海,章鸣,张静,孙巍,曹丹鸣,马丽萍,肖永志,谭宜.产前超声筛选胎儿早期心脏病的方法学研究[J].中华超声影像学杂志,2007,16(1):43-46. 被引量:14
  • 3中国出生缺陷防治报告.中华人民共和国卫生部,2012.
  • 4Souka AP, von Kaisenberg CS, Hyett JA, et al. Increase nuchal translucency with normal karyotype. Am J Obste* Gynecol, 2005,192:1005- 1021.
  • 5Reddy UM, Mennuti MT. Incorporating firs*-trimester Down syndrome studies into prenatal screening. Obstet Gynecol, 2006, 107:167 173.
  • 6Malone FD. Nuchal translucency based Down syndrome screening : barriers to implementation. Semin Perinatol, 2005,29 : 272 -276.
  • 7Brankov JG, Yang Y, Wei L, et al. I.earning a channelized observer for image quality assessment. IEEE Trans Med Imaging, 2009,28 :991-999.
  • 8Soares JV, Leandro JJ, Cesar J(lnior RM, et al. Retinal vessel segmentation using the 2 D Gabor wavelet and supervised classifieation. IEEE Trans Med Imaging, 2006,25 : 1214-1222.
  • 9Lu C, Devos A, Suykens JAK, et al. Bagging linear sparse bayesian learning models for variable selection in cancer diagnosis. IEEE Trans Inf Technol Biomed, 2007,11 : 338- 347.
  • 10Kandiah N,Mak E,Ng A,et al.Cerebral white matter hyperintensity in Parkinson's disease:a major risk factor for mild cognitive impairment[J].Park insonism Relat Disord,2013,19:680-683.

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部