期刊文献+

基于侧步爬山策略的混合多目标粒子群算法研究 被引量:2

Study of Hybrid Multi-objective Particle Swarm Optimization Based on Hill Climbing Strategy with Sidesteps
在线阅读 下载PDF
导出
摘要 为提高多目标粒子群算法(MOPSO)的收敛性与解集多样性,提出一种基于侧步爬山策略的混合多目标粒子群算法(H-MOPSO).通过建立局部搜索与粒子群优化的混合模型,在该模型中后期引入基于侧步爬山策略的局部搜索,周期性代替粒子群搜索并优化混合参数,使粒子根据距离前沿的远近朝下降或非支配方向搜索,加快粒子群收敛并改善其分布.同时采用非均匀变异算子和线性递减的惯性权重策略,避免算法早熟.通过标准测试函数的对比实验表明,该算法整体上比MOPSO、NSGA-II和MOEA/D具有更好的多样性与收敛性. To improve the convergence and diversity performance of multi-objective particle swarm optimization { MOPSO }, a hybrid MOPSO ( H-MOPSO } based on hill climbing strategy with sidesteps is proposed. The hybrid model of local search and particle swarm optimization is firstly established. According to the model, the local search algorithm based on hill climbing strategy with sidesteps is introduced periodically in late period with optimized parameters, making particles search along descent direction while they are away from Pareto front, and search along the front while they are near Pareto front. The non-uniform mutation operator is used and the iner- tia weight is set to be linearly decreased to avoid premature. Simulation results indicate that the proposed algorithm has favorable per- formance comparing to MOPSO, NSGA-II and MOEA/D.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第12期2696-2702,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61070135)资助 国家社会科学基金项目(10GBL095)资助
关键词 多目标优化 粒子群算法 侧步爬山策略 混合算法 multi-objective optimization particle swarm optimization hill climbing strategy with sidesteps hybrid algorithm
作者简介 E-mail:qfy@zjut.edu.cn;wlp@zjut.edu.cn作者简介:王丽萍。女,1964年生,教授,博士生导师,研究方向为决策优化、智能系统等; 吴秋花,女,1987年生,硕士研究生,研究方向为商务智能; 邱飞岳,男,1965年生,教授,研究方向为科学与媒体技术、智能系统等; 吴裕市,男,1987年生,硕士研究生,研究方向为人工智能; 林思颖,女,1990年生,硕士研究生,研究方向为决策优化.
  • 相关文献

参考文献2

二级参考文献16

  • 1Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chichester, NY, USA: Wiley, 2001.
  • 2Coello C A, Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]//Proceedings of the 2002 Congress on Evolutionary Computation: Vol. 2. Piscataway, NJ, USA: IEEE, 2002:1051-1056.
  • 3K D, Pratap A, A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 4Li X D. A non-dominated sorting particle swarm optimizer for multiobjective optimization[C]//Lecture Notes in Computer Science: Proceedings of Genetic and Evolutionary Computation: Vol. 2723. Berlin, Germany: Springer-Verlag, 2003: 37- 48.
  • 5Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems[C]//Proceedings of the 2002 ACM Symposium on Applied Computing. New York, NJ, USA: ACM Press, 2002: 603-607.
  • 6Fieldsend J E, Singh S. A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence[C/OL]//Proceedings of 2002 U.K. Workshop on Computational Intelligence. 2002: 37-44. [2009-05-02]. http://secamlocal.ex.ac.uk/peoplelstaff/jefields/publications.html.
  • 7Ray T, Liew K M. A swarm metaphor for multiobjective design optimization[J]. Engineering Optimization, 2002, 34(2): 141- 153.
  • 8Wickramasinghe W, Li X. Integrating user preferences with particle swarms for multi-objective optimization[C]//Proceedings of the 10th Annual Conference on Genetic and evolutionary computation. New York, NJ, USA: ACM Press, 2008: 745-752.
  • 9Molina J, Santana L V, Hemandez-Diaz A G, et al. G-dominance: Reference point based dominance for multiob- jective metaheuristics[J]. European Journal of Operational Research, 2009, 197(2): 685-692.
  • 10Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks Proceedings: vol. 1-6. Piscataway, NJ, USA: IEEE, 1995: 1942-1948.

共引文献18

同被引文献25

  • 1樊纪山,刘冠蓉,王鲁,时忠伟.一种改进快速稳定的多目标优化算法[J].计算机应用研究,2007,24(4):52-53. 被引量:6
  • 2Kennedy J, Eberhart R. Particle swarm optimization[C] Proc of IEEE Int Conf on Neural Network. Piscataway IEEE Press, 1995: 1942-1948.
  • 3Deb K, Agarwal S, Pratap A, et al. A fast elitist non- dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]. Proc of the Parallel Problem Solving from Nature VI. Paris, 2000: 849-858.
  • 4Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[R]. Zurich: Computer Engineering and Networks Lab, Swiss Federal Institute of Technologv. 2001.
  • 5Bar-Shalom Y, Tse E. Tracing in a cluttered environment with probabilistic data association[J]. Automatic, 1975, 11(9): 451-460.
  • 6Oliver Frank, Juan Nieto, Jose Guivant, et al. Multiple target tracking using sequential monte carlo methods and statistical data association[C]. IEEE/RSJ Int Conf on Intelligent Robots and System. Lasvegas, 2003, 3: 2718- 2723.
  • 7Zitzler E, Deb K, Thiele L. Comparison of multi-objective evolutionary algorithms: Empirical study[J]. Evolutionary Computation, 2000, 8(2): 173-195.
  • 8Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particle swarm optimization[C]. Proc of the 2003 IEEE Swarm Intelligence Symposium. Indianapolis: IEEE Service Center, 2003: 26-33.
  • 9Deb K, Thiele L, Launmanns M, et al. Scalable multi- objective optimization test problems[C]. Congress on Evolutionary Computation, 2002, 1(2): 825-830.
  • 10Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部