期刊文献+

教学测评数据的对应聚类分析法研究 被引量:3

在线阅读 下载PDF
导出
摘要 教学测评数据是教管部门了解教学信息的重要渠道和评价任课教师教学质量的一个重要依据。本文利用对应聚类分析方法,结合相关的测评数据,对测评的教学指标和被测评教师的实际情况进行统计分析,在谱系图中清楚显示教学指标与测评教师的对应关系,从而达到对整个教学团队的教学水平进行评价与管理的目的。
出处 《科技信息》 2012年第34期33-33,共1页 Science & Technology Information
基金 孝感学院教学项目(200708B)
作者简介 郝会兵(1979-),男,硕士,讲师,研究方向为概率论与数理统计。
  • 相关文献

参考文献4

二级参考文献20

共引文献35

同被引文献26

  • 1Brynjolfsson, E. Erik Brynjolfsson on Big Data: A Revolution in Decision-Making Improves Productivity [EB/OL]. http://mitsloanexperts. mit.edu/erik -brynjolfsson -on -big -data -a -revolution -in -decision - making-improves-productivity/.
  • 2Schleicher, A. Big Data and PISA [EB/OL]. http://www. huffingtonpost.Com/andreas -schleicher/big -data -and -pisa_b_3633558. html.
  • 3上海市教育委员会.2012年绿色指标推进情况[EB/OL].http://www.shmee.gov.cn/html/article/201306/68754.php.
  • 4Lohr, S. The Age of Big Data [N]. New York Times, 2012-2-11 (10).
  • 5Grafsgaard, J., K. Boyer & J. Lester. "Toward a Machine Learning Framework for Understanding Affective Tutorial Interaction" [A]. In Proceedings of the 1 lth International Conference on Intelligent Tutoring Systems, 2012,52-58.
  • 6Bienkowski, M., M. Feng & B. Means. Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics: An Issue Brief [M]. Washington, DC:Office of Educational Technology, U. S. Department of Education,2012.
  • 7Corbett, A. & J. Anderson. Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge [J]. User Modeling and User- Adapted Interaction, 1995,4,253-278.
  • 8Calvani, A.,A. Fini, M. Molino, & M. Ranieri. Visualizing and monitoring effective interactions in online collaborative groups. British Journal of Educational Technology,2009,41 (2), 213-226.
  • 9Beck, J & J. Mostow. "'How who should practice: Using learning decomposition to evaluate the efficacy of different types of practice for different types of students" [A]. In Proceedings of the 9th International Conference on Intelligent Tutoring Systems, 2008,353 - 362.
  • 10Hamilton, L., R. Halverson, S. Jackson, E. Mandinach,.J. Snpovitz, & J. Wayman. Using student achievement data to support instructional decision making [M]. Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education,2009.

引证文献3

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部