期刊文献+

膜电解池应用于碘硫循环制氢工艺中的HI浓缩 被引量:1

APPLICATION OF EED STACK IN CONCENTRATION OF HI IN IODINE-SULFUR CYCLE FOR HYDROGEN PRODUCTION
在线阅读 下载PDF
导出
摘要 碘硫循环是一种优选的热化学分解水制氢工艺,其中HI-I2-H2O物料中HI的浓缩是工艺得以高效运转的前提。采用自行设计的膜电解池(EED Cell)和膜电解池堆(EED Stack),对HI-I2-H2O进行HI的膜电解浓缩实验。通过监测电解电压以及物料的组成变化,对浓缩效果进行评价,分析温度、电流密度、物料浓度等对膜电解池堆效率的影响规律。实验结果表明,EED可有效浓缩HI,使其超越恒沸点浓度,将EED池体组建为EED堆可有效拓展EED的处理能力;EED电压受到温度、料液浓度等因素的影响,其中温度的影响最为显著。 Iodine-Sulfur thermochemical cycle is one of the most promising massive hydrogen production methods. Iodine-Sulfur cycle produces hydrogen with the hydrogen iodide (HI) decomposition reaction, which means that efficient separation of HI from HIx solution ( HI-H2O-I2 mixture) produced in the Bunsen reaction step is very im- portant. Because of the presence of azeotrope at HI: H2O≈1:5 (molar ratio), conventional distillation consumes a lot of excess heat and cannot produce pure HI. Therefore, the concentration of HI is a necessary process for effi- cient operation. Electro-electrodialysis (EED) cell and EED stack including 2 cell units (5cm × 5cm) were de- signed and applied for the treatment of HIx solution, using Nation 117 as PEM, and ISO graphite as electrodes. The results show that EED can concentrate HI effectively, even to the over-azeotropic concentration, especially benefit- ted from the structure of EED stack composing 2 or more single EED units. The effects of temperature, current den- sity and electrolyte component on the EED performance were studied, and the effect of temperature is the most obri- OUS.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2012年第10期1824-1828,共5页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(20806044) 国家科技重大专项(2010ZX06901)
关键词 膜电解 碘化氢浓缩 碘硫循环 制氢 electro-electrodialysis HI concentration iodine-sulfur process hydrogen production
作者简介 通讯作者:陈崧哲(1975-),男,博士、高级工程师,主要从事核能制氢方面的研究。chenszh@mail.tsinghua.edu.cn
  • 相关文献

参考文献7

  • 1Rosen M A. Advances in hydrogen production by thermochemical water decomposition : A review [ J ]. Energy, 2010, 35(2) : 1068-1076.
  • 2Onuki K, Kubo S, Terada A, et al. Thermochemical water-splitting cycle using iodine and sulfur [ J ]. Energy & Environmental Science, 2009, 2 (5):491 --497.
  • 3Zhang P, Chen S Z, Wang L J, et al. Overview of nuclear hydrogen production research through iodine sulfur process at INET [ J ]. International Journal of Hydrogen Energy, 2010, 35(7): 2883-2887.
  • 4Zhang P, Chen S Z, Wang L J, et al. Study on alab- scale hydrogen production by closed cycle thermo-chemical iodine-sulfur process [ J ]. International Journal of Hydrogen Energy, 2010, 35(19): 10166-10172.
  • 5Onuki K, Hwang G J, Shimizu S. Electrodialysis of hyd- riodic acid in the presence of iodine[J]. Journal of Membrane Science, 2000, 175(2): 171-179.
  • 6Hwang G J, Onuki K, Nomura M, et al. Improvement of the thermochemical water-splitting IS (iodine-sulfur) process by electro-electrodialysis [ J ]. Journal of Membrane Science, 2003, 220(1-2) : 129-136.
  • 7Yoshida M, Tanaka N, Okuda H, et al. Concentration of HIx solution by electro-electrodialysis using Nafion 117 for thermochemical water-splitting IS process [ J ]. International Journal of Hydrogen Energy, 2008, 33 ( 23 ) : 6913--6920.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部