期刊文献+

基于TDAR模型的VaR估计方法及应用 被引量:1

The Estimating Method of VaR Based on the Threshold Double AR Model and its Application
原文传递
导出
摘要 文献中,在险值估计方法一般基于线性假设,但是该假设在实际中很难满足,需要为此提出非线性的在险值估计方法。与以往传统模型一般假定变化发生在"时间"点上不同,门限双自回归(TDAR)因状态空间的不同而建立不同模型来对非对称性、结构变点等非线性现象进行刻画,并同时允许均值和波动率过程的结构变化。本文首次基于TDAR建立TDAR-VaR方法,并对上证指数和香港恒生指数进行了实证研究和对杠杆效应进行了分析。实证分析发现TDAR-VaR较好地预测了市场风险。 In most literature, the measurement methods of VaR are based on the linear statement. Howev- er, in practice this assumption cannot be satisfied quite well. So it is needed to put forward the nonlinear estimation method of VaR. In contrast to the traditional model that allows model changes to occur in the "time" space, the threshold double AR model (TDAR) uses threshold space to model the nonlinear phe- nomena such as asymmetry and the structure change, and also allows the structure change of mean and vol- atility. In this paper, the method of TDAR-VaR is presented for the first time, and the empirical research and the leverage effect analysis on SZZS and HIS index are also covered. The empirical analysis shows that this method can predict the market risk very well.
出处 《中国管理科学》 CSSCI 北大核心 2012年第5期1-6,共6页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70221001 70331001 10628104 71003100) 中国人民大学科学研究基金项目(11XNK027 10XNF020) 安徽省自然科学基金(090416245) 高等学校博士学科点专项科研基金(20103402120010)
关键词 门限双自回归模型 在险值 非线性 杠杆效应 threshold double AR model VaR nonlinear leverage effect
作者简介 蒋勇(1983-),男(汉族),江苏人,中国科学技术大学金融工程专业,博士生,研究方向:金融工程与风险管理.
  • 相关文献

参考文献19

二级参考文献48

共引文献37

同被引文献17

  • 1Bollerslev T. Glossary to ARCH (GARCH) [M] // Bollerslev T,Russell J R, Watson M W. Volatility and Time Series Econometrics:Essays in Honor of Robert F. Engle. Oxford : Oxford, University Press, 2010.
  • 2Gencay R, Selcuk F, Ulugulyagci A. High volatility, thick tails and extreme value theory in value-at-risk estimation[J]. Insurance: Mathematics and Economics, 2003,33 (2) : 337 - 356.
  • 3Hill B M. A simple general approach to inference about the tail of a distribution[J]. The Annals of Statistics,1975,3(5) :1163 - 1174.
  • 4McNeil A J, Frey R. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach [J]. Journal of Empirical Finance, 2000,7 (3/4) : 271 - 300.
  • 5Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk [J]. The Journal of Risk, 2000, 2 (3): 21 - 41.
  • 6Jorion P. Value at risk: the new benchmark for managing financial risk [ M]. New York: McGraw- Hill,2001.
  • 7Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982,50 (4) : 987 - 1007.
  • 8Gilli M, Kllezi E. An applidation of extreme value theory for measuring financial risk[J]. Computational Economics, 2006,27 (2/3) : 207 - 228.
  • 9Pickands J I. Statistical inference using extreme order statistics[J]. The Annals of Statistics, 1975,3 (1): 119- 131.
  • 10Balkema A A,De Haan L. Residual life time at great age [J]. The Annals of Probability,1974,2(5) :792 - 804.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部