期刊文献+

采用扩展型双线性变换法将耳语音转换为正常语音的研究 被引量:4

Research of conversion from whispered speech to normal speech by the extended bilinear transformation
在线阅读 下载PDF
导出
摘要 提出了一种采用扩展型双线性变换将耳语音转换为正常语音的方法。根据耳语音在不同频段的共振峰偏移程度不同,将耳语音的频谱进行分段处理,在此基础上建立耳语音转换为正常语音的转换函数。由于耳语音在各频段相对于正常语音非线性偏移,在双线性变换函数中引入扩展因子,使其对频谱的非线性偏移与对共振峰带宽的压缩更加符合耳语音转换为正常语音的实际转换需求,有效减小了转换语音与正常语音的谱失真距离。实验结果表明,本文的转换语音在音质和可懂度上均得到了有效提高。 One method of conversion from whispered speech to formal speech based on the extended bilinear trans- formation is proposed. On account of the different deviation degrees of the whisper's formants in different frequency bands, the spectrum of the whispered speech will be processed in the separate partitions of this paper. On the basis of this spectrum, we will establish a conversion function able to usefully convert whispered speech to formal speech. Because of the whisper's non-linear offset in relation to normal speech, this paper introduces an expansion factor in the bilinear transform function making it correspond more closely to the actual conversion demands of whispered speech to formal speech. The introduction of this factor takes the non-linear move of the spectrum and the compression of the formant bandwidth into consideration, thus effectively reducing the spectrum distortion distance in the conversion. The experiment results show that the conversion presented in this paper effectively improves both the sound quality and the intelligibility of whispered speech.
出处 《声学学报》 EI CSCD 北大核心 2012年第6期651-658,共8页 Acta Acustica
基金 国家自然科学基金(61271359 61071215) 苏州市科技发展计划(SYG201001) 苏州大学捷美生物医学工程仪器联合重点实验室资助项目
关键词 双线性变换法 语音转换 扩展型 耳语音 分段处理 转换函数 扩展因子 变换函数 Bandwidth compression Frequency bands Mathematical transformations Speech
  • 相关文献

参考文献4

二级参考文献31

共引文献29

同被引文献22

  • 1张勇,赵晓群.基于线性预测模型的氦语音增强算法研究[J].声学技术,2007,26(1):111-116. 被引量:3
  • 2Tartter V C. Identifiability of vowels and speakers from whispered syllables. Attention, Perception, Psychophy- sies, 1991, 49(4): 365-372.
  • 3Jin Yun, Zhao Yan, Huang Chengwei, Zhao Li. Study on the emotion recognition of whispered speech. In: Zhou Shangming, Wang Wenwu ed. GCIS2009, Proceedings of WRI Global Congress on Intelligent Systems, Xiamen, China, 2009, Piscataway, N J: IEEE, 2009:242-246.
  • 4Li Junfeng, Yang Lin, Zhang Jianping, Yan Yonghong. Comparative intelligibility investigation of single-channel noise-reduction algorithms for Chinese, 3apanese, and En- glish. The Journal of the Acoustical Society of America, 2011, 129(5): 3291-3301.
  • 5Loizou P C, Kim G. Reasons why current speech- enhancement algorithms do not improve speech intelligibil- ity and suggested solutions. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(1): 47-56.
  • 6Ephraim Y, Malah D. Speech enhancement using a mini- mum mean-square error log-spectral amplitude estimator. IEEE Transactions on Acoustics, Speech and Signal Pro- cessing, 1985 33(2): 443-445.
  • 7Cohen I. Noise spectrum estimation in adverse environ- ments: Improved minima controlled recursive averaging. IEEE Transactions on Speech and Audio Processing, 2003, 11(5): 466-475.
  • 8Varga A, Steeneken H J M. Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems. Speech Communication, 1993, 12(3): 247-251.
  • 9Taal C, Hendriks R, Heusdens R et al. An algorithm for intelligibility prediction of time-frequency weighted noisy speech. IEEE Transactions on Audio, Speech, and Lan- guage Processing, 2011, 19(7): 2125-2136.
  • 10Ephraim Y, Malah D. Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech and Signal Processing, 1984, 32(6): 1109-1121.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部