期刊文献+

OLAP聚集计算中的维存储技术 被引量:2

Dimensional-stores technology in OLAP aggregation
在线阅读 下载PDF
导出
摘要 为解决传统行存储结构导致OLAP聚集计算效率低下的问题,设计了基于维存储的OLAP数据存取技术.首先,将OLAP事实表中的维属性集和度量属性集定义为2个列族,每张维表的所有属性定义为1个列族.对维表进行二进制编码,生成维层次编码,从而保持了维的层次语义特性.以(维层次编码,度量值)对形式按列组织数据,消除查询时维表与事实表的复杂连接操作运算.然后,采用自底向上方法构建B+树,对维层次编码进行索引,加快了数据读取效率.通过增删事实表和维层次编码-度量表中相应的列,实现维和度量的增加和删除.性能分析结果表明,这种OLAP数据存取技术具有良好的可扩展性,能高效地管理和存取OLAP海量多维数据,有效支持上层OLAP聚集计算. To improve the efficiency of OLAP( online analytical processing) aggregation in tradition- al row-stores, a dimension-stores based OLAP data access technology is designed. First, the dimen- sion attributes and measure attributes of the OLAP fact table are defined as two column families, and all attributes in a dimension table are defined as one column family. Dimension tables are encoded by using binary digit to generate dimension hierarchy codes, and thus the hierarchy semantics of dimen- sion is maintained. The data are organized as (dimension hierarchy code, measure value) to elimi- nate the complex join operations between dimension tables and fact table in query. Then, a B + tree index is bottom-up built to index the dimension hierarchy codes, which accelerates the data access efficiency. Adding and deleting the corresponding columns in fact table and dimension hierarchy code-measure tables can realize the addition and deletion of dimensions and measures. The performance analysis results show that this OLAP data access technology has good expandability. It can effi- ciently manage and access massive OLAP multidimensional data, and effectively supports the upper OLAP aggregation.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第5期797-802,共6页 Journal of Southeast University:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)资助项目(2010CB328104) 国家自然科学基金资助项目(61070161 60903161 60903162 61003257) "十一五"国家科技支撑计划资助项目(2010BAI88B03 2011BAK21B02) 高等学校博士点学科专项科研基金资助项目(20110092130002) 江苏省自然科学基金资助项目(BK2008030) 东南大学江苏省网络与信息安全重点实验室资助项目(BM2003201) 东南大学教育部计算机网络与信息集成重点实验室资助项目(93K-9) 浙江师范大学计算机软件与理论省级重中之重学科开放基金资助项
关键词 OLAP HBASE 维存储 B+树 OLAP( online analytical processing) HBase dimensional-stores B + tree
作者简介 宋爱波(1970-),男,博士,副教授,absong@seu.edu.cn
  • 相关文献

参考文献11

  • 1Chaudhuri S, Dayal U. An overview of data warehou- sing and OLAP technology [ J ]. SIGMOD Record, 1997, 26( 1 ) :65 - 74.
  • 2Copeland G P, Khoshafian S N. A decomposition stor- age model [C]// Proceedings of the 1985 ACM SIG- MOD International Conference on Management of Data. New York, USA, 1985:268 - 279.
  • 3Neil Roiter. SenSage opens SIEM data to business intel- ligence tools [ EB/OL]. (2011-02-04) [2011-05-05 ]. http://www, networkcomputing, com/wan-security/ sensage-opens-siem-data-to-business-intelligence-tools. php.
  • 4罗润升.Sybase IQ红宝书[M].北京:中国水利水电出版社,2008:2-5.
  • 5Chang F, Dean J, Ghemawat S, et al. BigTable:a dis- tributed storage system for structured data [ J ]. ACM Transactions on Computer Systems, 2006,26 ( 2 ) :4 - 8.
  • 6Vermeij M, Quak W, Kersten M, et al. MonetDB, a novel spatial column-store DBMS [ EB/OL]. ( 2008-10-31 ) [ 2011-05-05 ]. http://www, gdmc. nl/publica- tions/2008/MonetDB, pdf.
  • 7Stonebraker M, Abadi D J, Batkin A, et al. C-store:a column-oriented DBMS [ C]// Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, Norway, 2005:553 - 564.
  • 8Hadoop Wiki. HBase: bigtable-like structured storage for Hadoop HDFS [EB/OL]. (2012-02-23) [2012-04- 17 ]. http ://wiki. apache, org/hadoop/Hbase.
  • 9Feinberg D, Beyer M A. Magic quadrant for data ware- house database management systems [EB/OL ]. (2011- 01-28 ) [2011-05-05 ]. http ://www. sybase, com/files/ White_Papers/Gartner _MagicQuad_ forDataWarehouse- DMS. pdf.
  • 10Zou Yongqiang, Liu Jia, Wang Shicai. CCIndex:a complemental clustering index on distributed ordered tables for multi-dimensional range queries [ J ]. Lecture Notes in Computer Science, 2010, 6289:247 -261.

同被引文献14

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部