期刊文献+

锥度量空间中锥的非正规性条件(英文) 被引量:8

Conditions of Non-normality in Cone Metric Spaces
在线阅读 下载PDF
导出
摘要 该文首先给出锥度量空间中的锥为非正规锥的几个充要条件,随后给出一个例子进行验证.并且在锥度量空间中,当不考虑空间的完备性时,在压缩映射条件下,得到非正规锥的存在性.这些结果直接改进前人关于度量空间的一些结果,也补充他们关于锥度量空间的一些结果. In this paper,we present some necessary and sufficient conditions on non-normal cone in cone metric spaces. We support our results by an example. Moreover, we obtain the existence of non- normal cone under contractive mapping without the assumption of completeness in cone metric spaces. The results directly improve and replenish some assertions in metric spaces and some previ- ous results in cone metric spaces.
作者 黄华平
出处 《应用数学》 CSCD 北大核心 2012年第4期894-898,共5页 Mathematica Applicata
基金 Supported by the Graduate Initial Fund of Hubei Normal University (2008D36)
关键词 偏序 非正规锥 锥度量空间 Partial ordering Non-normal cone Cone metric space
作者简介 Biography: HUANG Huaping, male, Han, Hubei,lecturer,major in nonlinear functional analysis.
  • 相关文献

参考文献6

  • 1Kantorovich Lv. On some further applications of the Newton approximation method[J]. Vestn LeningrUniv. Ser. Mat. Mekh Astron. ,1957,12:68-103.
  • 2Vandergraft Js. Newton's method for convex operators in partially ordered spaces[J]. Siam J. Numer. A-nal. ,1967,4:406-432.
  • 3Deimling M. Nonlinear Functional Analysis[M]. Berlin:Springer-Verlag.1985.
  • 4HUANG Longguang, ZHANG Xian. Cone metric spaces and fixed point theorems of contractive map-pings[J]. j. Math. Anal. Appl. .2007 ,332 : 1468-1476.
  • 5Rezapour Sh,Hamlbarani R. Some notes on the paper “Cone metric spaces and fixed point theorems ofcontractive mappings,,[J]. J. Math. Anal. Appl. ,2008,345 :719-724.
  • 6Jankovic S.Kadelburg Z,Radebovic S. On cone metric spaces: A survey[J]. Nonlinear Analysis,2011,74:2591-2601.

同被引文献23

  • 1LIU Hao,XU Shaoyuan.Fixed point theorems of quasi-contractions on cone metric spaces with Banach algebras[J].Abstract and Applied Analysis,Volume 2013,Article ID 187348,5 pages,http://dx.doi.org/10.1155/2013/187348.
  • 2LIU Hao,XU Shaoyuan.Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings[J].Fixed Point Theory and Applications,2013,320:1-10.
  • 3Rudin W.Functional Analysis[M],2nd Edition.New York:McGraw-Hill Companies,Inc.,1991.
  • 4HUANG Longguang,ZHANG Xian.Cone metric spaces and fixed point theorems of contractive map-pings[J].Journal of Mathematical Analysis and Applications,2007,332:1468-1476.
  • 5Rezapour Sh,Hamlbarani R.Some notes on the paper"Cone metric spaces and fixed point theorems of contractive mappings"[J].Journal of Mathematical Analysis and Applications,2008,345-719-724.
  • 6Jankovic S,Kadelburg Z,Radenovic S.On cone metric spaces :A survey[J].Nonlinear Analysis,2011,74:2591-2601.
  • 7Ilic D,Rakocevic V.Quasi-contraction on a cone metric space[J].Applied Mathematics Letters,2009,22:728-731.
  • 8Kadelburg Z,Radenovic S,Rakocevic V.Remarks on"Quasi-contraction on a cone metric space"[J].Applied Mathematics Letters,2009,22:1674-1679.
  • 9Gajic L,Rakocevic V.Quasi-contractions on a nonnormal cone metric space[J].Functional Analysis and Its Applications,2012?46(1):62-65.
  • 10Deimling K. Nonlinear functional analysis[M]. Berlin: Springer-verlag, 1985.

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部