摘要
该文首先给出锥度量空间中的锥为非正规锥的几个充要条件,随后给出一个例子进行验证.并且在锥度量空间中,当不考虑空间的完备性时,在压缩映射条件下,得到非正规锥的存在性.这些结果直接改进前人关于度量空间的一些结果,也补充他们关于锥度量空间的一些结果.
In this paper,we present some necessary and sufficient conditions on non-normal cone in cone metric spaces. We support our results by an example. Moreover, we obtain the existence of non- normal cone under contractive mapping without the assumption of completeness in cone metric spaces. The results directly improve and replenish some assertions in metric spaces and some previ- ous results in cone metric spaces.
出处
《应用数学》
CSCD
北大核心
2012年第4期894-898,共5页
Mathematica Applicata
基金
Supported by the Graduate Initial Fund of Hubei Normal University (2008D36)
关键词
偏序
非正规锥
锥度量空间
Partial ordering
Non-normal cone
Cone metric space
作者简介
Biography: HUANG Huaping, male, Han, Hubei,lecturer,major in nonlinear functional analysis.