摘要
借鉴协同过滤个性化推荐思想,提出基于同行评价计算用户相似度的学术论文个性化推荐-传播平台模型:研究人员借助推荐-传播系统将自己或他人的学术论文推荐给与其有相似研究兴趣的网络邻居,从而可基于同行协同过滤将学术文献高效获取和研究成果主动推介结合起来。运用计算机多主体仿真方法,本文模拟并验证了推荐-传播平台的性能。
Employing the idea of collaborative filtering in personalized recommendation, this paper proposes a recommendation - propa- gation platform model of scientific literatures in which users' similarities are computed based on peer review. Through this recommenda- tion -propagation system, each researcher can recommend his/her or other' s scientific literatures to the nearest neighbors (those re- searchers with similar research interests) in scientific community networks. By this way, effectively obtaining and actively introducing scientific literatures are interwoven by the peer collaborative filtering recommendation mechanism. Based on multi - agent simulation, this paper validates the performance of the recommendation - propagation platform system.
出处
《科学学研究》
CSSCI
北大核心
2012年第10期1462-1467,共6页
Studies in Science of Science
基金
教育部人文社科项目(11YJA630014)
浙江省自然科学基金项目(Y6110018)
关键词
个性化推荐
协同过滤
同行评议
personalization recommendation
collaborative filtering
peer review
作者简介
段文奇(1976-),男,湖南邵阳人,副教授,博士,研究方向为复杂网络与平台管理。
惠淑敏(1976-),女,内蒙古丰镇人,馆员,硕士,研究方向为信息管理。