摘要
该文研究了一类由二自由度可积哈密顿系统构成的一维阵列的行波解,发现在长波极限下,问题可约化为分析哈密顿系统在扰动下的同异宿轨道的情形.当无扰系统具有共振时,利用能量──相方法,得到该系统存在同、异宿到不动点和周期轨的充分条件,在该条件下相应地一维阵列存在一组具有孤波特征的行波,同时给出了一个N脉冲孤立子波的例子.
Travelling wave solution in a one-dimensional array of two degree-of-freedomHamiltonian system is considered. We show that in the long-wave limit,the problem can bereduced to the analysis of the honoclinic orbits of perturbed system. with a resonance in theunperturbed system,we show that the perturbed system have multi-pulse honoclinic orbitsasgmptotic to a periodic orbit,or fixed points using energy-phase method. Therefore, thearray have travelling wave solutions analogous to multi-pulse solitons.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1999年第4期361-367,共7页
Acta Mathematica Scientia
基金
国家自然科学基金