期刊文献+

高温厌氧菌CBZ-S-MEE2利用不同碳源发酵产氢的研究 被引量:1

Hydrogen production from various carbon sources fermented by a thermophilic anaerobic bacterium CBZ-S-MEE2
在线阅读 下载PDF
导出
摘要 以从长白山温泉中分离的一株高温厌氧产氢菌CBZ-S-MEE2为菌种,对该菌利用不同碳源发酵产氢进行研究。利用葡萄糖进行发酵产氢时,最大产气速率为180mL(/L.h),产氢效率为1.8mol H2/mol葡萄糖,表明该菌可以快速利用葡萄糖发酵产氢,对葡萄糖的转化效率高。对未经预处理纤维素和以纤维素为主要成分的碳源进行发酵时,该菌在硫元素缺失或pH偏碱性的状态下不能充分的生长,产氢速率低。在改进试验中,通过维持较好的硫元素平衡,以纤维素为唯一碳源发酵时,最大产气速率为77mL(/L.h),产氢效率为7.5mol H2/gVS。表明高温厌氧菌CBS-Z-MEE2可以利用未经预处理的纤维素原料为唯一碳源进行发酵产氢,这为以纤维素为主要成分的生物质发酵产氢奠定了技术基础。 A thermophilic anaerobic hydrogen-producing bacterium CBZ-S-MEE2 was isolated from the hot springs of Changbai Mountain. The hydrogen production from various carbon sources fermented by CBZ-S-MEE2 was studied. On glucose, the maximum hydrogen production rate was 180ml/(L.h), and the efficiency of hydrogen production was 1.8mol H2/mol glucose. The results indicated that CBZ-S-MEE2 converted glucose to Hz fast and effectively. When untreated cellulose or the substrate mainly consisting of cellulose was used as carbon source for hydrogen fermentation, CBZ-S-MEE2 could grow well with the lack of sulfur or basic pH, and the hydrogen production rate was low. In further experiment, abundant sulfur was added in the medium, then the maximum hydrogen production rate and hydrogen production efficiency reached 77mL/(L-h) and 7.5mol H2/gVS respectively using untreated cellulose as sole carbon source. It was demonstrated that CBS-Z-MEE2 could use untreated cellulose as sole carbon source for hydrogen production which was critical for hydrogen production from cellulose by microbial fermentation.
出处 《中国酿造》 CAS 2012年第9期66-70,共5页 China Brewing
基金 吉林省科技发展计划项目(20100563)
关键词 产氢 高温厌氧菌 纤维素 碳源 hydrogen production thermophilic anaerobic bacterium cellulose carbon source
作者简介 于雷(1973-),男,副教授,研究方向为食品科学与发酵工程。
  • 相关文献

参考文献14

  • 1FANG liP, ZHANG T, LIU H. Microbial diversity of mesophilic hydro- gen producing sludge[J]. Appl Microbiol Blot, 2002, 58:112-118.
  • 2康铸慧,王磊,郑广宏,周琪.微生物产氢研究的进展[J].工业微生物,2005,35(2):41-49. 被引量:12
  • 3YUNG CHUNG LO. Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial iso- late[J], Int J Hydr Energ, 2009, 34: 6189-6200.
  • 4KADARZ, VRIJEKT, NOORDENGE, et al. Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus [J]. Appl Biochem Biot, 2004, 113 (16): 497-508.
  • 5YOKOIH, MORIS, HIROSE J, et al. H2 production from starch by a mixed culture of Clostridiium butyricum and Rhodobacter sp. M-19[J]. Bioteelmoi Lett, 1998, 20:890 -895.
  • 6WILLQUIS K, Physiological characteristics of the extreme thermophile Calclicellulosiruptor saccharolyticus: an efficient hydrogen cell factory [J]. Microbial Cell Factories, 2010(9): 89.
  • 7T. DE VRIJE .A.E. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus[J]. Appl Mi- crobiol Biotech, 2007, 74:1358-1367.
  • 8KADAR Z, DE VRIJE T, BUDDE MAW, et al. Hydrogen production from paper sludge laydrolysate[J]. Appl Biochem Biotechnol, 2003:107 (1-3):557-566.
  • 9PRAPAIPID CHAIRATTANAMANOKORN. Additional paper waste in pulping sludge for biohydrogen production by heat-shocked sludge [J]. Appl Biochem Biotechnol, 2010, 11 : 9434-9435.
  • 10HIROSHI YOKOYAMA. Continuous hydrogen production from glu- cose by using extreme thermophilic anaerobic microflora [J]. J Biosei Bioeng, 2009, 107(1): 64-66.

二级参考文献38

  • 1Rosen MA, Scott DS. Comparative efficiency assessments for a ranged hydrogen production process. Int J Hydrogen Energy,1998,23: 653 - 659.
  • 2D. Das, T.N. Veziroglu. Hydrogen production by biological process: a survey of literature. Int J Hydrogen Energy, 2001,26:13-28.
  • 3Benemann JR. Feasibility analysis of photobiological hydrogen production. Iht J Hydrogen Energy, 1997,22:979-987.
  • 4Smith GD, Ewart GD, Tucker W. Hydrogen production by cyanobacteria. Int J Hydrogen Energy, 1992,17:695 - 698.
  • 5S. Tanisho et al. Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrogen Energy, 1998,23(7):559-563.
  • 6Singh SP, Srivastava SC, Pandey KD. Hydrogen production by Rhodopseudomonas at the expense of vegetable starch,sugar cane juice and whey. Int J Hydrogen Energy, 1994,19:437-440.
  • 7H. Koku et al. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy, 2002,27:1315 - 1329.
  • 8Macler BA, Pelroy RA, Bassbam JA. Hydrogen formation in nearly stoichiometric amounts by a Rhodopseudomonas sphaeroides mutant. J Bacterial, 1978,138(2) :446 -452.
  • 9Yigit DO et al. Identification of by-products in hydrogen producing bacteria: Rhodobacter sphaeroides O. U. 001 grown in the wastewater of a sugar refinery. J Biotechnol, 1999, 70:125 -131.
  • 10Hustede E, Steinbuchel A, Schlegel HG. Relationship between photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Appl Microbiol Biotechnol, 1993,39: 87- 93.

共引文献11

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部