期刊文献+

非高斯杂波下雷达目标跟踪算法改进研究 被引量:1

Research on a Modified Radar Target Tracking Algorithm in Non-Gaussian Clutter
在线阅读 下载PDF
导出
摘要 针对杂波干扰环境中的非高斯特性,发现海杂波噪声、闪烁噪声等具有显著尖峰的非高斯噪声可以采用α稳定分布来描述,用α稳定分布可以建立更符合实际的噪声模型。根据统计信号处理最新理论和技术,利用p阶分数相关和分数低阶协方差替代传统相关和协方差来改进Kalman滤波器,优化获得改进的基于分数低阶统计量Kalman滤波交互多模型算法(Based FLOS-Kalman-IMM),仿真验证了Based FLOS-Kalman-IMM滤波跟踪新算法可以更好地适应非高斯复杂环境,得到稳健的雷达跟踪效果。 Aimed at non-Gaussian characteristics in clutter jamming environment, this paper studies the significant peak non-Gaussian noises, such as sea clutter noise and glint noise, which can be described by al- pha stable distribution. The more practical noise model can be established by use of the alpha stable distribu- tion. According to the lastest theory and technology of statistic signal processing, p order fractional associat- ed and fractional lower order covariance is used to modify Kalman filter. The optimized fractional lower order covariance Kalman filter interacting multiple model algorithm is introduced to the target tracking for compli- cated non-Gaussian situation and the solid radar tracking effect is achieved.
机构地区 [
出处 《雷达科学与技术》 2012年第4期391-395,共5页 Radar Science and Technology
关键词 雷达目标跟踪 非高斯杂波 KALMAN滤波 Α稳定分布 分数低阶统计量 交互多模型 radar target tracking non-Gaussian clutter Kalman filter alpha stable distribution frac-tional lower order statistics interacting multiple model
作者简介 石一鸣女,1985年出生,黑龙江哈尔滨人,硕士研究生,助理工程师,研究方向为脉冲雷达测量与控制、信号处理等。E-mail:shiyimingl218@163.com
  • 相关文献

参考文献11

  • 1Daeipour E, Bar-Shalom Y. An Interacting Multiple Model Approach for Target Tracking with Glint Noise [C] // Record of the IEEE National Radar Conference, Atlanta, GA:IEEE, 1994:150-154.
  • 2朱志宇.基于UKF的闪烁噪声机动目标跟踪[J].计算机仿真,2007,24(11):120-123. 被引量:5
  • 3曾浩,郭文卓,刘宝泉.复合高斯海杂波环境下雷达虚警概率分析[J].雷达科学与技术,2011,9(1):44-47. 被引量:4
  • 4Georgiou P G. Alpha-Stable Modeling of Noise and Robust Time-Delay Estimation in the Presence of Implusive Noise[J]. IEEE Trans on Multimedia, 1999, 1(3):291-301.
  • 5Shao M, Nikias C L. Signal Processing with Fractional Lower Order Moments:Stable Processes and Their Applieations[J]. Proceedings of the IEEE, 1993, 87 (1) :986-1010.
  • 6Chambers J A, Tanrikuiu O, Constantinides A G. Least Mean Mixed-Norm Adaptive Filtering[J]. Electronics Letters, 1994, 30(19) : 1574-1575.
  • 7Bodenschatz J S, Nikas C L. Symmetric Alpha-Stable Filter Theory[J]. IEEE Trans on Signal Processing, 1997, 45(9) :2301-2306.
  • 8张安清,邱天爽,章新华.α稳定分布的水声信号处理新方法[J].电子与信息学报,2005,27(8):1201-1204. 被引量:13
  • 9Ma X Y. Robust Signal Processing in Impulsive Noise with Stable Distributions:Estimation, Identification and Equalization [D]. USA: University of Southern California, 1996.
  • 10查代奉,邱天爽.一种基于分数低阶协方差矩阵的波束形成新方法[J].通信学报,2005,26(7):16-20. 被引量:7

二级参考文献40

  • 1施龙飞,王雪松,曾献军,肖顺平.K分布海杂波相干视频信号之仿真[J].雷达科学与技术,2004,2(3):158-162. 被引量:9
  • 2胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 3吴玲,卢发兴,刘忠.UKF算法及其在目标被动跟踪中的应用[J].系统工程与电子技术,2005,27(1):49-51. 被引量:39
  • 4Skolnik M I. Introduction to Radar System(3rd ed) [M]. New York:McGraw Hill, 2001:21 -55.
  • 5Ward K D. Compound Representation of High Reso- lution Sea Clutter[J]. Electronics I.etters, 1981, 17 (16) :561-563.
  • 6Conte E, Longo M, Lops M. Modeling and Simula tion of Non Rayleigh Radar Clutter[J]. lEE Proceed ings-F, 1991, 138(2):121- 130.
  • 7Conte E, De Maio A, Galdi C. Statistical Validation of the Compound Gaussian Model on Clutter Data from IPIX Radar[C] // Radar 2001 International Con ferenceon Radar Systems, Toulouse;[s. n.], 2004: 18- 22.
  • 8Balleri A, Nehorai A, Wang J. Maximum I.ikelihood Estimation for Compound-Gaussian Clutter with Inverse Gamma Texture[J]. IEEE Trans on AES, 2007, 43(2) :775-779.
  • 9Watts S. Radar Sea Clutter: Recent Progress and Future Challenges[C]//2008 International Conference on Radar, Adelaide SA:[s. n. ], 2008;10-16.
  • 10Keith DW. Robert J T, Simon W. Sea Clutter:Scattering, the K Distribution and Radar Performance [M]. London, United Kingdom: The Institution of Engineering and Technology, 2006 : 101-144.

共引文献26

同被引文献6

  • 1马利兵,林都.基于MATLAB的外弹道模型仿真研究[J].中北大学学报(自然科学版),2006,27(5):412-415. 被引量:28
  • 2ROBERT C P, CASSELLA G. Monte Carlo Statisti- cal Methods[M]. New York:Springer-Verlag, 1999: 235-262.
  • 3BRUNO M G S, PAVLOV A. Improved Particle Fil- ters for Ballistic Target Tracking[C]//2004 IEEE In- ternational Conference on Acoustics, Speech, and Sig- nal Processing, IS. 1. :[-s. n. ], 2004 17-21.
  • 4BRUNO M G S, PAVLOV A. Improved Sequential Monte Carlo Filtering for Ballistic Target Tracking [J]. IEEE Trans on Aerospace and Electronic Sys- tems, 2005 ,41(3) :1103-1108.
  • 5CHOU R, BOERS Y, PODT M, et al. Performance Evaluation for Particle Filters[C] ff 2011 Proceedings of the 14th International Conference Information Fu- sion, Chicago, IL.. IEEE, 2011 .. 1-7.
  • 6WANG Q, KULKARNI S R, VERDU S. Divergence Estimation for Multidimensional Densites via k-Nea- rest-Neighbor Distances[J]. IEEE Trans on Informa- tion Theory, 2009, 55(5):2392-2405.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部