期刊文献+

二维一刀切装箱问题的两阶段启发式算法 被引量:12

Two-stage heuristic algorithm for two-dimensional guillotine bin packing problem
在线阅读 下载PDF
导出
摘要 对用于二维带排样问题的Heuristic Recursive算法进行了调整,给出同一层中两个相邻浪费区域在满足一刀切约束下是否可合并的判定定理。构造了二维带排样问题的多递归层算法,并将它与一维装箱问题的最优匹配递减算法相结合,提出适应二维一刀切非旋转装箱问题的两阶段算法。在500组标准测试案例的基础上,与多种算法进行了比较。实验结果表明,所提算法在绝大多数测试案例上能够获得更好的排样布局。 The Heuristic Reeursive(HR)algorithm for two-dimensional strip packing problem was adjusted, and a judgment theorem which was used to determine whether two neighbor wasted spaces in same layer could be combine or not was presented. A multi-recursive algorithm for two-dimensional strip packing problem(2D-SPP)was constructed, and a Two-Stage Approach (TSA)for two-dimensional oriented guillotine bin packing problem was proposed by combining the algorithm with Best-Fit Decreasing(BFD)algorithm of one-dimensional bin packing problem. On the basis of 500 group benchmark problems, the approach was compared with multiple algorithms, the experiments showed that the proposed approach could obtain better results for almost all test instances.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2012年第9期1954-1963,共10页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(10571037) 黒龙江省教育厅资助项目(12511103) 哈尔滨理工大学青年科学研究基金资助项目(2009YFL005)~~
关键词 递归算法 启发式算法 一刀切 二维非旋转装箱问题 recursive algorithms heuristic algorithms guillotine 2D oriented bin packing problem
作者简介 曹大勇(1978-),男,安徽固镇人,讲师,博士研究生,研究方向:NP难问题的近似求解、并行计算、切割下料问题等,E-mail:caodayong@hrbust.edu.cn 杨梅(1981-),女,安徽怀远人,博士研究生,研究方向:NP难问题的近似求解、并行计算; 科托夫·弗拉基米尔·米哈伊拉维奇(1955-),男,白俄罗斯明斯克人,教授,博士,研究方向:组合优化、近似算法、在线算法; 刘润涛(1961-),男,黑龙江东宁人,教授,博士,研究方向:空间数据库、计算几何、计算机辅助几何设计、计算机图形算法等。
  • 相关文献

参考文献12

  • 1GAREY M R, JOHNSON D S. Computers and intractability [M]. San Francisco, Cal. , USA: Freeman, 1979.
  • 2贾志欣.排样问题的研究现状与趋势[J].计算机辅助设计与图形学学报,2004,16(7):890-897. 被引量:44
  • 3LODI A, MARTELLO S, VIGO D. Recent advances on two- dimensional bin packing problems[J]. Discrete Applied Math- ematics, 2002,123 (1/2/3) : 379-396.
  • 4WASCHER G, HAUBNER H, SCHUMANN H. An im- proved typology of cutting and packing problems[J]. Europe- an Journal of Operational Research, 2007,183(3) : 1109-1130.
  • 5ZHANG D, KANG Y, DENG A. A new heuristic reeursive algorithm for the strip rectangular packing problem[J]. Com- puters Operations Research, 2006,33 (8) : 2209-2217.
  • 6CHUNG F R K, GAREY M R, JOHNSON D S. On packing two-dimensional bins[J]. SlAM Journal on Algebraic and Dis- crete Methods, 1982,3 (1) .- 66-76.
  • 7BERKEY J O, WANG P Y. Two-dimensional finite bin-pack- ing algorithms[J]. Journal of the Operational Research Socie- ty, 1987,38 (5) : 423-429.
  • 8PUCHINGER J, RAIDL G R. Models and algorithms for three-stage two-dimensional bin packing[J]. European Jour- nal of Operational Research, 2007,183 (3) : 1304-1327.
  • 9AMOSSEN R R, PISINGER D. Multi-dimensional bin pack- ing problems with guillotine constraints[J] Computers . Op- erations Research, 2010,37(11) :1999-2006.
  • 10MARTELLO S, VIGO D. Exact solution of the two-dimen- sional finite bin packing problem[J]. Management Science, 1998,44 (3) : 388-399.

二级参考文献114

共引文献43

同被引文献71

引证文献12

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部