期刊文献+

多智能体系统分散式通信决策研究 被引量:3

Research on decentralized communication decision in multi-Agent system
在线阅读 下载PDF
导出
摘要 通信是多智能体系统(MAS)之间协调与协作的最有效和最直接的方法,然而通信的代价却限制了该方法的使用。为了减少MAS协调过程中的通信量,提出一种启发式算法,使Agent仅选择能够改善团队期望回报的观察信息进行通信。实验结果证明,对通信信息的选择能够高效的利用通信带宽,有助于提高系统的性能。 Communication is the most effective and direct method of coordinating and cooperating among multi-Agents, but the cost of communication restricts the use of this method. In order to reduce traffic subject in the coordination of Multi- Agent System (MAS), this paper put forward a heuristic algorithm, which would make Agents choose the observation that is beneficial to team performance to communicate. The experimental results show that choosing beneficial observation to communicate could ensure the efficiency of limited communication bandwidth and improve system performance.
出处 《计算机应用》 CSCD 北大核心 2012年第10期2875-2878,共4页 journal of Computer Applications
基金 河南省重点科技攻关项目(102102210176 122102210086)
关键词 多智能体系统 协作 分散式通信 马尔可夫决策过程 部分可观察马尔可夫决策过程 Multi-Agent System (MAS) cooperation decentralized communication Markov Decision Process (MDP) Partially Observable Markov Decision Process (POMDP)
作者简介 郑延斌(1964-),男,河南内乡人,教授,博士,主要研究方向:虚拟现实、多智能体系统、对策论;通信作者:郭凌云(1987-),女,河南林州人,硕士研究生,主要研究方向:虚拟现实,电子邮箱yuqian127@126.com;刘晶晶(1986-),女,河南兰考人,硕士研究生,主要研究方向:虚拟现实。
  • 相关文献

参考文献14

  • 1张秋花,薛惠锋,吴介军,寇晓东.多智能体系统MAS及其应用[J].计算机仿真,2007,24(6):133-137. 被引量:24
  • 2BUSONIU L, BABUSKA R, De SCHUTTER B. A comprehensive survey of Multi-Agent reinforcement learning [ J]. IEEE Transac- tions on Systems, Man, and Cybernetics -- Part C: Applications and Reviews. 2008, 38(2) : 156 - 172.
  • 3孙湧,仵博,冯延蓬.基于策略迭代和值迭代的POMDP算法[J].计算机研究与发展,2008,45(10):1763-1768. 被引量:7
  • 4NAIR R, ROTH M, YOKOO M, et al. Communication for impro- ving policy computation in distributed POMDPs[ C]// AAMAS'04: Proceedings of the Third International Joint Conference on Autono- mous Agents and Multiagent Systems. Washington, DC: IEEE Com- puter Society, 2004, 3:1098 - 1105.
  • 5BERNSTEIN D S, GIVAN R, IMMERMAN N, et al.. The com- plexity of decentralized control of Markov decision processes [ J]. Mathematics of Operations Research, 2002, 27(4) : 819 -840.
  • 6PESHKIN L, KIM K E, MEULEAU N, et al. Learning to cooperate via policy search[ C]// Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kanf- mann, 2000:489-496.
  • 7吴峰.基于决策理论的多智能体系统规划问题研究[D].合肥:中国科学技术大学,2011.
  • 8PYNADATH D V, TAMBE M. The communicative multiagent team decision problem: Analyzing teamwork theories and models [ J]. Journal of Artificial Intelligence Research, 2002, 16:389 -423.
  • 9GOLDMAN C V, ZILBERSTEIN S. Decentralized control of cooper- ative systems: Categorization and complexity analysis[ J]. Joumal of Artificial Intelligence Research, 2004, 22(1) : 143 - 174.
  • 10高阳,陈世福,陆鑫.强化学习研究综述[J].自动化学报,2004,30(1):86-100. 被引量:275

二级参考文献61

共引文献312

同被引文献37

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部