摘要
通信是多智能体系统(MAS)之间协调与协作的最有效和最直接的方法,然而通信的代价却限制了该方法的使用。为了减少MAS协调过程中的通信量,提出一种启发式算法,使Agent仅选择能够改善团队期望回报的观察信息进行通信。实验结果证明,对通信信息的选择能够高效的利用通信带宽,有助于提高系统的性能。
Communication is the most effective and direct method of coordinating and cooperating among multi-Agents, but the cost of communication restricts the use of this method. In order to reduce traffic subject in the coordination of Multi- Agent System (MAS), this paper put forward a heuristic algorithm, which would make Agents choose the observation that is beneficial to team performance to communicate. The experimental results show that choosing beneficial observation to communicate could ensure the efficiency of limited communication bandwidth and improve system performance.
出处
《计算机应用》
CSCD
北大核心
2012年第10期2875-2878,共4页
journal of Computer Applications
基金
河南省重点科技攻关项目(102102210176
122102210086)
关键词
多智能体系统
协作
分散式通信
马尔可夫决策过程
部分可观察马尔可夫决策过程
Multi-Agent System (MAS)
cooperation
decentralized communication
Markov Decision Process (MDP)
Partially Observable Markov Decision Process (POMDP)
作者简介
郑延斌(1964-),男,河南内乡人,教授,博士,主要研究方向:虚拟现实、多智能体系统、对策论;通信作者:郭凌云(1987-),女,河南林州人,硕士研究生,主要研究方向:虚拟现实,电子邮箱yuqian127@126.com;刘晶晶(1986-),女,河南兰考人,硕士研究生,主要研究方向:虚拟现实。