期刊文献+

通风瓦斯蓄热式热氧化过程数值模拟 被引量:8

Simulation on regenerative thermal oxidation of ventilation air methane
在线阅读 下载PDF
导出
摘要 为模拟通风瓦斯蓄热氧化过程的工作特性,并在此基础上优化关键性参数,建立了包含周期性边界条件和甲烷单步氧化反应机理的单通道均相反应模型,模拟实验室尺度下的以蜂窝蓄热体作为换热介质的蓄热式热氧化过程。用计算流体力学方法计算获得通风瓦斯蓄热式热氧化过程中气体流量、甲烷浓度对装置工作特性的影响。计算结果表明,单侧0.3 m长度的蓄热体,30 s的切换周期,可以满足一定范围内的通风瓦斯氧化需求。模拟给出了稳定和非稳定状态下沿流向的温度分布,可以发现温度分布从启动状态的抛物型温度场,经过上百个切换周期过渡到稳定的梯形温度场,实现自维持运行。 In order to simulate the performance of the thermal oxidation process and optimize the essential parameters, a simplified single channel homogeneous combustion model with periodic boundary conditions and one step methane/ air reaction mechanism was proposed for a regenerative thermal oxidizer on laboratory-scale. The basic performance of regenerative thermal oxidation of ventilation air methane were calculated by the computational fluid dynamics (CFD) without a pilot stage. The results show that a ceramic bed of 0.3 m in length at one side is sufficient to operate proper- ly at these conditions. Distributions of temperature on steady and unsteady state condition were respectively simulated by computational fluid dynamics. The initial parabolic temperature distribution gradually evolved into a typical trape- zoidal distribution of temperature field after hundreds of switching cycles.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2012年第8期1332-1336,共5页 Journal of China Coal Society
基金 中国科学院知识创新工程重要方向资助项目(KGGX2-YW-323)
关键词 蓄热式热氧化 通风瓦斯 计算流体力学 regenerative thermal oxidation Ventilation air methane(VAM) computational fluid dynamics
作者简介 邓浩鑫(1986-),男,安徽合肥人,博士研究生。E-mail:denghaoxin@iet.cn
  • 相关文献

参考文献17

  • 1US EPA. Anthropogenic emissions of non CO2 green-house gases1990--2020 [ R ]. Washington,2006.
  • 2US EPA. Inventory of US greenhouse gas emissions and sinks 1990-- 2000 [ R ]. Washington ,2002.
  • 3US EPA. Assessment of the worldwide market potential for oxidizing coal mine ventilation air methane[ R]. Washington ,2003.
  • 4US EPA. Technical and economic assessment : mitigation of methane emissions from coal mine ventilation air[ R ]. Washington,2000.
  • 5US EPA. Coal mine methane recovery[ R ]. Washington,2009.
  • 6Dobrego K V, Gnesdilov N N, Lee S H, et al. Lean combustibility limit of methane in reciprocal flow filtration combustion reactor[ J]. International Journal of Heat and Mass Transfer, 2008,51 : 2190 - 2198.
  • 7Dobrego K V,Gnesdilov N N,Lee S H,et al. Methane partial oxidation reverse flow reactor scale up and optimization [J]. International Journal of Hydrogen Energy,2008,33:5501-5509.
  • 8Dobrego K V, Gnesdilov N N, Lee S H, et al. Partial oxidation of methane in a reverse flow porous media reactor [ J ]. International Journal of Hydrogen Energy,2008,33:5535-5544.
  • 9Krzysztof Gosiewski, Anna Pawlaczyk, Krzysztof Warnmzinski, et al. A study on thermal combustion of lean methane-air mixtures : simplified reaction mechanism and kinetic equations [ J ]. Chemical Engi- neering Journal,2009,154:9-16.
  • 10Krzysztof Gosiewski, Yurii Sh Matros, Krzysztof Warmuzinski, et al. Homogeneous vs. catalytic combustion of lean methane-air mixtures in reverse-flow reactors [ J 1. Chemical Engineering Science ,2008, 63:5010-5019.

二级参考文献55

共引文献93

同被引文献63

  • 1Gosiewski K, Pawlaczyk A, Jaschik M. Thermal combustion of lean methane-air mixtures:Flow reversal research & demonstration re- actor model and its validation [ J ]. Chemical Engineering Journal, 2012,207:76-84.
  • 2Gosiewski K, Pawlaczyk A, Warmuzinski K, et al. A study on thermal combustion of lean methane-air mixtures : Simplified reaction mecha- nism and kinetic equations [ J ]. Chemical Engineering Journal, 2009,154( 1 ) :9-16.
  • 3Gosiewski K, Matros Y S, Warmazinski K, et al. Homogeneous vs. catalytic combustion of lean methane : air mixtures in reverse-flow re- actors [ J ]. Chemical Engineering Science, 2008,63 ( 20 ) : 5010 - 5019.
  • 4Deng H X,Wen Y X,Xiao Q,et al. Parametric study of thermal flow- reversal reactor for ventilation air methane oxidation [ J ]. Applied Mechanics and Materials ,2013,372:406-409.
  • 5Kolios G, Frauhammer J, Eigenberger G. Autothermal fixed-bed re- actor concepts [ J ]. Chemical Engineering Science, 2000,55 ( 24 ) : 5945 -5967.
  • 6Willmott A J. The regenerative heat exchanger computer representa- tion[ J]. International Journal of Heat and Mass Transfer, 1969,12 (9) :997-1014.
  • 7Kays W M, London A L. Compact heat exchangers[ M ]. New York: McGraw-Hill, 1984.
  • 8Machin N E,Caklrca E E,Ates A.Catalytic combustion of methane[C].6th International Advanced Technologies Symposium,Elazig,2011.
  • 9Mattus R.Converting VAM to energy[C].Szczyrk:New Trends in Coal Mine Methane Recovery and Utilization,2008.
  • 10Gosiewsiki K,Pawlaczyk A,Warmuzinski I K.A study on thermal combustion of lean methane-air mixtures:simplified reaction mechanism and kinetic equations[J].Chemical Engineering Journal,2009,154:9-16.

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部