摘要
为模拟通风瓦斯蓄热氧化过程的工作特性,并在此基础上优化关键性参数,建立了包含周期性边界条件和甲烷单步氧化反应机理的单通道均相反应模型,模拟实验室尺度下的以蜂窝蓄热体作为换热介质的蓄热式热氧化过程。用计算流体力学方法计算获得通风瓦斯蓄热式热氧化过程中气体流量、甲烷浓度对装置工作特性的影响。计算结果表明,单侧0.3 m长度的蓄热体,30 s的切换周期,可以满足一定范围内的通风瓦斯氧化需求。模拟给出了稳定和非稳定状态下沿流向的温度分布,可以发现温度分布从启动状态的抛物型温度场,经过上百个切换周期过渡到稳定的梯形温度场,实现自维持运行。
In order to simulate the performance of the thermal oxidation process and optimize the essential parameters, a simplified single channel homogeneous combustion model with periodic boundary conditions and one step methane/ air reaction mechanism was proposed for a regenerative thermal oxidizer on laboratory-scale. The basic performance of regenerative thermal oxidation of ventilation air methane were calculated by the computational fluid dynamics (CFD) without a pilot stage. The results show that a ceramic bed of 0.3 m in length at one side is sufficient to operate proper- ly at these conditions. Distributions of temperature on steady and unsteady state condition were respectively simulated by computational fluid dynamics. The initial parabolic temperature distribution gradually evolved into a typical trape- zoidal distribution of temperature field after hundreds of switching cycles.
出处
《煤炭学报》
EI
CAS
CSCD
北大核心
2012年第8期1332-1336,共5页
Journal of China Coal Society
基金
中国科学院知识创新工程重要方向资助项目(KGGX2-YW-323)
关键词
蓄热式热氧化
通风瓦斯
计算流体力学
regenerative thermal oxidation
Ventilation air methane(VAM)
computational fluid dynamics
作者简介
邓浩鑫(1986-),男,安徽合肥人,博士研究生。E-mail:denghaoxin@iet.cn