期刊文献+

利用核糖体工程选育丙酮丁醇菌提高丁醇产量 被引量:2

Screening of Clostridium strains through ribosome engineering for improved butanol production
原文传递
导出
摘要 利用核糖体工程技术对丙酮丁醇梭菌Clostridium acetobutylicum L7进行诱变筛选,以获得丁醇高产菌株。使用链霉素诱变C.acetobutylicum L7并结合设计的平板转接逐次提高链霉素浓度的筛选路线,获得丁醇产量较高的菌株S3。结果表明,S3丁醇产量为(12.48±0.03)g/L,乙醇产量为(1.70±0.07)g/L,相对于原始菌分别提高了11.2%及50%;丁醇/葡萄糖转化率由原始菌的0.19提高到0.22,丁醇生产率达到0.24 g/(L.h),相比提高30.5%;耐受丁醇浓度由原始菌的12 g/L提高到14 g/L;发酵液粘度下降到4 mPa/s,同比降低了60%,利于后续分离工作的进行,降低发酵成本。进一步研究工作表明,S3菌株遗传稳定性良好。因此,核糖体工程技术是一种选育丁醇高产菌株的有效方法。 We used ribosome engineering technology, with which antibiotic-resistant strains are resulted from mutations on microbial ribosome, to screen a high butanol-producing Clostridium strain. A novel mutant strain $3 with high butanol production and tolerance was obtained from the original Clostridium acetobutylicum L7 with the presence of mutagen of streptomycin. Butanol of 12.48 g/L and ethanol of 1.70 g/L were achieved in $3, 11.2% and 50%, respectively higher than the parent strain. The conversion rate of glucose to butanol increased from 0.19 to 0.22, and fermentation time was 9 h shorter. This caused an increase in butanol productivity by 30.5%, reaching 0.24 g/(L'h). The mutant butanol tolerance was increased from 12 g/L to 14 g/L, the viscosity of fermentation broth was dramatically decreased to 4 mPa/s, 60% lower than the parent strain. In addition, the genetic stability of mutant ribosome engineering technology may be a promising process strain S3 was also favorable. These results demonstrate that for developing high butanol-producing strains.
出处 《生物工程学报》 CAS CSCD 北大核心 2012年第9期1048-1058,共11页 Chinese Journal of Biotechnology
基金 国家高技术研究发展计划(863计划)(No.2011AA02A208)资助~~
关键词 核糖体工程 丙酮丁醇梭菌 丁醇发酵 丁醇耐性 链霉素 ribosome engineering, Clostridium acetobutylicum, butanol fermentation, butanol tolerance, streptomycin
  • 相关文献

参考文献26

  • 1Lee SY, Park JH, Jang SH, et al. Fermentative butanol production by clostridia. Biotechnol Bioeng, 2008, 101(2): 209-228.
  • 2Gheshlaghi R, Scharer JM, Young M, et al. Metabolic pathways of clostridia for producing butanol. Biotechnol Adv, 2009, 27(6): 764-781.
  • 3Qureshi N, Blaschek HP. Recent advances in ABE fermentation: hyper-butanol producing Clostridium beo'erinckt'i BA101. J Ind Microbiol Biotechnol, 2001, 27(5): 287-291.
  • 4Hermann M, Fayolle F, Marchal R, et al. Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol, 1985, 50(5): 1238-1243.
  • 5Ezeji T, Milne M, Price ND, et al. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol, 2010, 85(6): 1697-1712.
  • 6谢庶洁,肖静,徐俊.微生物核糖体工程研究进展[J].微生物学报,2009,49(8):981-986. 被引量:23
  • 7Ochi K. From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem, 2007, 71(6): 1373-1386.
  • 8Hosaka T, Ohnishi-Kameyama M, Muramatsu H, et al. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol, 2009, 27(5): 462-464.
  • 9Ochi K, Okamto S, Tozawa Y, et al. Ribosome engineering and secondary metabolite production. Adv Appl Microbiol, 2004, 56: 155-184.
  • 10孙玉雯,崔承彬.抗生素抗性筛选在微生物菌株选育中的作用[J].国际药学研究杂志,2008,35(3):213-217. 被引量:39

二级参考文献50

共引文献58

同被引文献15

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部