期刊文献+

三体W态的纠缠与非定域性 被引量:3

Entanglement and non-locality of three-qubit W states
在线阅读 下载PDF
导出
摘要 计算了三体W态的Svetlichny不等式,给出了W态非定域性的解析表达式,讨论了W态的剩余纠缠。结果表明三体W态有着独特的共生纠缠和非定域特性,为进一步研究W态各量子比特之间的纠缠特性以及纠缠动力学提供了理论依据。 The threshold value of Svetlichny inequality of three-qubit W states was calculated. The analytic expression of nonlocality for W states was introduced. And the relation between three body entanglement and nonlocality was investigated. The results show that three-qubit W states have unique three body entanglement and nonlocality. These results will provide theoretical foundation for the further research of entanglement feature and entanglement dynamics of W states.
出处 《量子电子学报》 CAS CSCD 北大核心 2012年第5期542-546,共5页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金(11174224) 山东省自然科学基金(ZR2009AL018) 山东省科学技术发展计划(2010GGX10118) 山东省高等学校科技计划项目(J11LA56)资助课题
关键词 量子光学 W态 剩余纠缠 Svetlichny不等式 非定域性 quantum optics W states three body entanglement Svetlichny inequality nonlocality
作者简介 王晓芹(1963-),女,硕士,教授,主要从事量子光学和量子信息方面的研究。E-mail:wangxq3267@80hu.com
  • 相关文献

参考文献25

  • 1Braunstein L, Kimble H J. Teleportation of continuous quantum variables [J]. Phys. Rev. Lett., 1998, 80: 869-872.
  • 2Bennet C H, Brassaid G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1993, 70: 1895-1898.
  • 3Ekert A. Quantum cryptography based on Bell's theorem [J]. Phys. Rev. Lett., 1991, 67: 91-94.
  • 4Knill E, Laflamme R, Mibum G J. Quantum dynamics of two coupled qubits [J]. Nature, 2001, 409: 46-49.
  • 5Einstin A, et al. Can quantum-mechanical description of physical reality be considered complete? [J]. Phys. Rev., 1935, 47: 777-781.
  • 6Bell J S. On the Einstein-Podolsky-Rosen paradox [J]. Phys., 1964, 1: 195-198.
  • 7Clauser J F, Home M A, Shimory A, et al. Proposed experiment to test local hidden-variable theories [J]. Phys. Rev. Left., 1969, 23: 880-883.
  • 8Bell J S. Speaking and Unspeakable in Quantum Mechanics [M]. Cambridge University Press, 1987: 29-38.
  • 9Reid M D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification [J]. Phys. Rev. A, 1989, 40: 913-917.
  • 10Chen Zengbing, Pan Jianwei, Hou Guang, et al. Maximal violation of Bell's inequalities for continuous variable systems [J]. Phys. Rev. Left., 2002, 88: 040406.

同被引文献37

  • 1满忠晓,张战军,李勇.Deterministic Secure Direct Communication by Using Swapping Quantum Entanglement and Local Unitary Operations[J].Chinese Physics Letters,2005,22(1):18-21. 被引量:31
  • 2曹海静,宋鹤山.Quantum Secure Direct Communication with W State[J].Chinese Physics Letters,2006,23(2):290-292. 被引量:29
  • 3BENNETT C H,BRASSARD G.Quantum cryptography:public keydistribution and coin tossing[C]//Proc of IEEE International Confe-rence on Computers,Systems,and Signal Processing.1984:175-179.
  • 4杨静.量子安全直接通信的理论研究[D].北京:北京邮电大学,2012.
  • 5LEE H,LIM J,YANG H.Quantum direct communication with au-thentication[J].Physical Review A,2006,73(4):042305-1-5.
  • 6NIELSEN M A,CHUANG I L.Quantum computation and quantum in-formation[M].Cambridge,UK:Cambriage University Press,2000:464-465.
  • 7MAURICIO,GUTIERREZ,LUKAS,et al.Approximation of realisticerrors by Clifford channels and Pauli measurements[J].PhysicalReview A,2013,87(3):030302(R)l-5.
  • 8Nicolas Gisin,Gre′goire Ribordy,et al.Quantum cryptography[J].Reviews of modern physics,2002,74(1):145-190.
  • 9LONG Guilu,LIU Xiaoshu.Theoretically efficient high-capacity quantum-key-distribution scheme[J].Physical Review A,2002,65(3):032302.
  • 10FurusawaA,SornsenJL,etal.UnconditionalQuantumTeleportation[J].Science,1998,282(5389):706-709.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部