期刊文献+

基于α稳定分布参数和支持向量机的齿轮箱故障诊断方法 被引量:6

Fault Diagnosis Method for Gearbox Based onα-Stable Distribution Parameters and Support Vector Machines
在线阅读 下载PDF
导出
摘要 针对含有尖脉冲的齿轮箱振动信号故障特征难以提取且样本较少的问题,提出了一种基于α稳定分布和支持向量机故障诊断的新方法。先设计齿轮箱故障测试方案,获取齿轮箱振动信号;然后提取齿轮箱振动信号的α稳定分布参数,用它作为故障类型的特征样本,并结合决策树和投票法构造多分类支持向量机齿轮箱故障决策系统。该方法较好地解决了小样本学习问题,避免了人工神经网络进行诊断时的过学习、收敛速度慢等缺点。实际齿轮箱故障诊断实验结果表明所提方法有效。 A novel method was proposed based on a-stable distribution parameters and support vector machine about the gearbox fault diagnosis.Firstly,the experiment project on fault diagnosis was designed.Then,the vibration signals of the gearbox were tested,and a-stable distribution parameters of the signals were extracted, which contained the running information.Combining with the basic thought of voting method and decision tree, a special decision-structure of MSVM was designed.Moreover,the decision-structure solved the small sample learning problems well and overcame the shortcoming of over-fitting,longtime training of ANN in fault diagnosis. A practical experimental result demonstrates that the presented intelligent diagnosis method is effective.
作者 余香梅 舒彤
出处 《测控技术》 CSCD 北大核心 2012年第8期23-26,30,共5页 Measurement & Control Technology
基金 江西省教育厅科技资助项目(CJJ11244 GJJ11245)
关键词 α稳定分布参数 支持向量机 齿轮箱 故障诊断 α-stable distribution parameters support vector machine(SVM) gearbox fault diagnosis
作者简介 余香梅(1976-),女,江西赣州人,副教授,主要研究方向为机械制造、智能测试技术
  • 相关文献

参考文献9

  • 1Meltzer G, Dien N P. Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps [ J ]. Mechanical Systems and Signal Processing, 2004, 18(5) :985 -992.
  • 2杨洁明,熊诗波.小波包分析方法在齿轮早期故障特征提取中的应用[J].振动.测试与诊断,2000,20(4):269-272. 被引量:26
  • 3Lai W X, Tse P W, Zhang G C, et al. Classification of gear faults using cumulates and the radial basis function network [ J ]. Mechanical Systems And Signal Processing, 2004, 18 (2) :381 -389.
  • 4Wang W, Ismail F, Golnaraghi F. A neuro-fuzzy approach to gear system monitoring[ J]. IEEE Transactions on Fuzzy Sys- tems ,2004,12( 5 ) :710 - 723.
  • 5Chen P, Liang X Y, Yamamoto T. Rough sets and partially- linearized neural network for structural fault diagnosis of to-tating machinery [ J ]. Lecture Notes in Computer Science, 2004,3174 : 193 - 215.
  • 6Wang W. H,An D X,Zhou D H. Hybrid neural network based gray-box approach to fault detection of hybrid systems [ J ]. Lecture Notes in Computer Science,2004,3174:555 - 560.
  • 7VapnikVN.Thenatureofstatisticallearningtheory[M].NewYork:Spring-Verlag,1999.
  • 8Koutrouvelis I A. Regression-type estimation of the parame- ters of stable laws [ J ]. Journal of the American Statistical Association, 1980,75 (372) :918 - 928.
  • 9吴德会.基于多分类支持向量机的智能辅助质量诊断研究[J].系统仿真学报,2009,21(6):1689-1692. 被引量:5

二级参考文献13

  • 1杨世元,吴德会,苏海涛.基于PCA和SVM的控制图失控模式智能识别方法[J].系统仿真学报,2006,18(5):1314-1318. 被引量:18
  • 2Duncan A J. Quality Control and Industrial Statistics [M]. Homewood: Irwin, 1986.
  • 3Shewhart M. Interpreting Statistical Process Control (SPC) Charts Using Machine Learning and Expert System Techniques [C]// Aerospace and Electronics Conference, Proceedings of the IEEE 1992. National, Dayton, OH, USA: IEEE, 1992: 1001-1006.
  • 4Hwarng H B, Hubele N F. Back Propagation Pattern Recognizers for X-bar Control Charts Methodology and Performance [J]. Computers & Industrial Engineering (S0360-8352), 1993, 24(2): 220-235.
  • 5Velasco T, Rowe M R. Back Propagation Artificial Neural Networks for the Analysis of Quality Control Charts [J]. Computer & Industrial Engineering (S0360-8352), 1993, 25(1): 397-401.
  • 6Vapnik V N. The Nature of Statistical Learning Theory [M]. New York, USA: Spring-Verlag, 1999.
  • 7Vapnik V N. An Overview of Statistical Learning Theory [J]. IEEE Transaction Neural Networks (S 1045-9227), 1999, 10(5): 988-999.
  • 8Moreira M, Mayoraz E. Improved Pairwise Coupling Classification with Correcting Classifiers [C]// Processing of the 10th European Conference on Machine Learning (ECML-98), Chemnitz, Germany, April 24, 1998. New York: Springer, 1998: 160-171.
  • 9Grant E L, Leavenworth R S. Statistical Quality Control [M]. New York, USA: McGraw-Hill Book Company, 1988.
  • 10Lei H, Govindaraju V. Half-Against-Half Multi-class Support Vector Machines [C]// Proceedings of Sixth International Workshop on Multiple Classifier Systems (MCS'05), Monterey Bay, California, USA, June 13-15, 2005. Berlin, New York: Springer, 2005: 156-164.

共引文献29

同被引文献62

  • 1彭泽军,王宝瑞,陈辉.基于神经网络的电火花加工工艺选择模型研究[J].机械科学与技术,2006,25(4):394-397. 被引量:11
  • 2杨虞微,左洪福,陈果.支持向量机时间序列预测模型的参数影响分析与自适应优化[J].航空动力学报,2006,21(4):767-772. 被引量:20
  • 3Wu Zhaohua, Huang N E. Ensemble empirical modedecomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41.
  • 4Yu Gang,Shi Ningning. Gear fault signal modeling anddetection based on alpha stable distribution[C] // 2012International Symposium on Instrumentation Meas-urement, Sensor Network and Automatic (IMSN A ).Piscataway,NJ, USA: IEEE, 2012-471-474.
  • 5Yu Gang, Li Changning,Zhang Jianfeng. A new sta-tistical modeling and detection method for rolling ele-ment bearing faults based on alpha-stable distribution[J]. Mechanical Systems and Signal Processing,2013 .41(1):155-175.
  • 6Samorodnitsky G,Taqqu M S. Stable non-gaussianrandom processes : stochastic models with infinite vari-anceBoca Raton, Florida. USA: Chapman andHall/CRC, 1994 :l-49.
  • 7Eberhart R C, Kennedy J . A new optimizer usingparticle swarm theory [C] //Proc 6th Int Symposiumon Micro Machine and Human Science. Nagoya, Ja-pan: [s. n. ],1995:39-43.
  • 8Suykens J A K, Vandewalle J. Least squares supportvector machine classifiers[J]. Neural Processing Let-ters,1999,9(3) :293-300.
  • 9LoParo K A. Bearings vibration dataset,Case WesternReserve University[EB/OL]. (2008-12-05) [2014-05-12]. http: // www. eees. ewru. edu/laboratory/bear-ing/download, htm.
  • 10Koutrouvelis I A. An iterative procedure for the esti-mation of the parameters of stable laws[J]. Communi-cations in Statistics-Simulation and Computation,1981,10(1).17-28.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部