期刊文献+

基于加权LS-SVM的青霉素发酵过程建模 被引量:15

Modeling for penicillin fermentation process based on weighted LS-SVM
在线阅读 下载PDF
导出
摘要 青霉素发酵过程中,一些重要参数的检测存在一定的误差,给生产过程的监测及重要参数的实时监控等带来一定困难。样本数据中自变量、因变量均有可能包含误差数据,影响模型建立的准确性,本文采用加权最小二乘算法,给各个样本的误差平方赋予不同权重用于克服异常训练样本的影响,利用Pensim仿真平台数据,采用粒子群算法(PSO)对加权最小二乘向量机算法(WLS-SVM)的参数寻优,建立青霉素发酵过程模型,通过仿真实验表明了该算法用于青霉素发酵过程建模的有效性。 Some important parameters testing have certain error which brings some difficulty to ensure monitoring the production process and the real-time control of some important quality parameters.Because of the error data may be contained in the independent variables and dependent variables of the sample data,which may affect the accuracy of the model,so in this article we use the weighted least-square algorithm to give the punishment of square-errors of each sample different weights to overcome the abnormal influence of the training samples.Using the simulation data from the Pensim simulation platform to establish the weighted least squares vector machine(WLS-SVM)model in the Penicillin Fermentation by using particle swarm optimization(PSO)on the weighted least squares vector machine parameters optimization algorithm,through the simulation experiments show that the algorithm is used for the effectiveness of penicillin fermentation process modeling.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第9期2913-2919,共7页 CIESC Journal
基金 国家自然科学基金项目(21206053 30971689) 中国博士后科学基金项目(2012M511678) 江苏高校优势学科建设工程项目(PAPD) 江苏省博士后科学基金项目(1101021B)~~
关键词 加权 最小二乘支持向量机 建模 青霉素 weighting; the least square support vector machine; model; penicillin
作者简介 联系人及第一作者:熊伟丽(1978-),女,博士,副教授。
  • 相关文献

参考文献15

  • 1高学金,王普,张亚庭,张会清,齐咏生,关伟.一种提高微生物发酵单位的新优化控制策略[J].化工学报,2008,59(6):1462-1469. 被引量:5
  • 2Gonzaga J C B, Meleiro L A C, Kiang C, Maciel Filho R. ANN based soft-sensor for real time process monitoring and control of an industrial polymerization process [J ]. Computers and Chemical Engineering, 2009, 33 (1) : 43-49.
  • 3李修亮,苏宏业,褚健.Multiple Model Soft Sensor Based on Affinity Propagation, Gaussian Process and Bayesian Committee Machine[J].Chinese Journal of Chemical Engineering,2009,17(1):95-99. 被引量:32
  • 4Vapnik V N. The Nature Statistical Learning Theory [M]. New York: Springer Verlag, 1999.
  • 5Vapnik V N. An overview of statistical learning theory [M]. IEEE Transactions on Neural Network, 1999, 10 (5) : 988-999.
  • 6Wang Xianfang, Chen Jindong, Liu Chunbo, Pan Feng. Hybrid modeling of penicillin fermentation process based on least square support vector machine [ J ]. Chemical Engineering Research and Design, 2010, 88: 415-420.
  • 7Li Lijuan, Su Hongye, Chu Jian, Modeling of isomerization of C8 aromatics by online least squares support vector machine [J]. Chinese Journal of Chemical Engineering, 2009, 17 (3): 437-444.
  • 8李丽娟,宋坤,赵英凯.基于仿射传播聚类的ARA发酵过程建模[J].化工学报,2011,62(8):2116-2121. 被引量:18
  • 9Guo Guodong, Li Stan, Chan Kap Luk. Support vector machines for face recognition [J]. Image and Vision Computing, 2001, 19 (9): 631-638.
  • 10Suykens J A K, Brabante J Der, Lukas L, Vandewalle J. Weighted least squares support vector machines: robustness and sparse approximation [J]. Neurocomputing, 2002, 8 ( 5): 85-105.

二级参考文献22

共引文献177

同被引文献163

引证文献15

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部