期刊文献+

基于监督等距映射高光谱遥感影像降维 被引量:1

DIMENSION REDUCTION OF HYPERSPECTRAL REMOTE SENSING IMAGERY BASED ON SUPERVISED ISOMETRIC MAPPING
在线阅读 下载PDF
导出
摘要 在面向分类的高光谱遥感数据降维过程中,考虑到高光谱遥感数据内在的非线性结构和传统流形学习非监督的特点,提出一种新的监督等距映射方法(S-Isomap)。方法基于类间距离大于类内距离的思想,首先利用KMEANS算法对原始数据进行聚类得到样本的初始类别标签,采用新距离搜寻数据点的K近邻,进而实施等距映射降维。实验证明了该方法优于传统Isomap。 Considering the intrinsic nonlinear structure of hyperspectral remote sensing data and the characteristic of unsupervision of traditional manifold learning, during the process of dimension reduction of classification-oriented hyperspectral remote sensing data, we propose a new method of supervised isometric mapping (S-Isonmap). The method is based on the idea that the between-class distance is greater than the within-class distance. First it obtains initial category labels of the samples by using KMEANS algorithm on primary data for clustering; then it searches the K-Nearest neighbour of the data points with new distances, and further executes the dimension reduction by Isomap. Experiments demonstrate that the presented method outperforms the traditional Isomap.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第8期66-69,共4页 Computer Applications and Software
基金 国家自然科学基金项目(41071273) 高等学校博士学科点专项科研基金资助课题(20090095110002) 中央高校基本科研业务费专项资金项目(2010QNA21) 国土环境与灾害监测国家测绘局重点实验室开放基金资助项目(LEDM2011B07) 江苏高校优势学科建设工程资助项目(SA1102)
关键词 高光谱遥感 特征提取 KMEANS 监督等距映射 Hyperspectral remote sensing Feature extraction KMEANS Supervised isometric mapping
作者简介 钱进,硕士生,主研领域:摄影测量与遥感。 邓喀中,教授。 范洪冬,讲师。 刘冬,硕士生。
  • 相关文献

参考文献16

  • 1苏红军,杜培军,盛业华.一种基于分形维数的高光谱遥感波段选择算法研究[J].测绘通报,2007(3):23-26. 被引量:10
  • 2杜培军,林卉,孙敦新.基于支持向量机的高光谱遥感分类进展[J].测绘通报,2006(12):37-40. 被引量:35
  • 3Bachmann C M, Ainsworth T L. Exploiting manifold geometry in hyper- spectral imagery [ J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(3 ) :441 -454.
  • 4Tenenbanm J, Silva D, Langford J. A Global Geometric Framework for Nonlinear Dimensionality Reduction [ J ]. Science, 2000,290 ( 5500 ) : 2319 -2323.
  • 5Sam Roweis, Saul L. Nonlinear dimensionality reduction by Locally Lin- ear Embedding[ J ]. Science ,2000,290 ( 5500 ) :2323 - 2326.
  • 6Chen Y C, Crawford M M, Ghosh J. Applying nonlinear manifold learn- ing to hyperspectral data for Land cover classification [ C]//IGARSS' 5 : Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium. Washington, DC : IEEE Computer Society, 2005 : 24 - 29.
  • 7Qian S E,Chen G Y. A new nonlinear dimensionality reduction method with application to hyperspectral image analysis [ C ]//IGARSS' 07 : Proceeding of the 2007 IEEE International Geoscience and Remote Sensing Symposium. Washington, DC: IEEE Computer Society,2007: 270 - 273.
  • 8Geng X ,Zhan D C ,Zhou Z H. Supervised nonlinear dimensionality re- duction for visualization and classification [ J ]. IEEE Transactions on Systems, man, and Cybernetics-Part B : Cybernetics,2005,35 (6) : 1098 - 1107.
  • 9Bruske J,Sommer G. Intrinsic dimensionality estimation with optimally topology preserving maps [J]. IEEE Trans. Pattern Ana/ysis and Ma- chine Intelligence, 1998,20 ( 5 ) :572 - 598.
  • 10Camastra F, Vinciarelli A. Estimating intrinsic dimension of data with fractal-based approach [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence ,2002,24 ( 10 ) : 1404 - 1407.

二级参考文献57

  • 1赵春晖,刘春红.超谱遥感图像降维方法研究现状与分析[J].中国空间科学技术,2004,24(5):28-36. 被引量:19
  • 2刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:84
  • 3张华国,黄韦艮,周长宝,厉冬玲,肖清梅.关于IKONOS卫星遥感图像的分形特征研究[J].测绘通报,2005(5):15-18. 被引量:12
  • 4Hughes G F. On the Mean Accuracy of Statistical Pattern Recognition[J]. IEEE Trans Inf Theory, 1968, IT-14(1):55-63.
  • 5Kumar S, Ghosh J, Crawford M M. Best-Bases Feature Extraction Algorithms for Classification of Hyperspeetral Data [J]. IEEE Trans Geosci and Rem Sens, 2001, 39(7): 1 368-1 379.
  • 6Hsu P H. Feature Extraction of Hyperspectral Ima- ges Using Wavelet and Matching Pursuit [J]. IS- PRS Journal of Photogrammetry & Remote Sens- ing, 2007,62:78-92.
  • 7Du Qian, He Yang. Similarity-based Unsupervised Band Selection for Hyperspectral Image Analysis [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 564-568.
  • 8Tenenbaum J, Silva D D , Langford J . A Global Geometric Framework for Nonlinear Dimensionality Reduction[J] . Science, 2000, 290 (5 500) : 2 319 -2 323.
  • 9Roweis S, Saul L. Nonlinear Dimensionality Reduc- tion by Locally Linear Embedding [J]. Science, 2000, 290(5 500) : 2 323 - 2 326.
  • 10Junping Z, Li S Z, Jue W. Manifold Learning and Applications in Recognition in Intelligent Multime- dia Processing with Soft Computing [M]. Heidel- berg: Springer-Verlag, 2004.

共引文献85

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部