期刊文献+

基于自适应模糊神经网络的机器人路径规划方法 被引量:37

Path planning for mobile robot based on adaptive fuzzy neural network
在线阅读 下载PDF
导出
摘要 为了解决传统反应式导航中的复杂陷阱问题,优化导航控制,减少计算复杂度,提出了基于自适应模糊神经网络的机器人导航控制及改进型虚目标路径规划方法.首先根据移动机器人运动学模型,融合神经网络的自主学习功能与模糊控制的模糊推理能力,提出了基于自适应模糊神经网络的机器人导航控制器,将生成的Takagi-Sugeno型模糊推理系统作为机器人局部反应控制的参考模型.该自适应模糊神经网络控制器实时输出扰动角度,在线调整移动机器人的预瞄准方向,使移动机器人能够无碰撞趋向目标.然后,提出了一种改进型虚目标方法,优先选择机器人可能逃脱陷阱状态的路径,简化了设计难度,改变了虚目标切换方式,避免了大量复杂计算.实验结果表明,提出的方法可以帮助机器人在全局信息未知的复杂环境中导航,在趋近目标点的过程中能有效避障,无冗余路径产生,且轨迹平滑. To solve the complex trap problems in the traditional reactive navigation and optimize navigation control with reduction of computational complexity,a navigation method that combines mobile robot navigation control based on adaptive fuzzy neural network and an improved virtual target path planning is proposed.First,a mobile robot controller based on the kinematic model combining the learning ability of neural network and the fuzzy reasoning of fuzzy control is designed,resulting in Takagi-Sugeno fuzzy system which is used as the reference model in local reaction control.The controller outputs disturbance angle for real-time adjustment of the direction of robot,and the mobile robot tends to the target without collision by means of the controller.Then,an improved virtual target method is applied to solve local trap problem.The robot may prefer the path to escape from the trap state.This approach can simplify the design difficulty,change the virtual target switching mode,and reduce a large number of complex calculations.The experimental results show that the proposed method can help the mobile robot navigate in unknown complex environments and approach the target without collisions and redundant paths,and the trajectory is smooth.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期637-642,共6页 Journal of Southeast University:Natural Science Edition
基金 国家高技术研究发展计划(863计划)资助项目(2006AA04Z246) 教育部重大创新工程培育资金资助项目(708045)
关键词 自适应模糊神经网络 导航 陷阱问题 虚目标 路径规划 adaptive fuzzy neural network navigation trap problem virtual target path planning
作者简介 钱夔(1987-),男,博:仁生; 宋爱国(联系人),男,博士,教授,博十生导师,a.g.song@sell.edu.cn.
  • 相关文献

参考文献11

  • 1Chiu S L. Fuzzy model identification based on duster estimation [ J ]. Journal of Intelligent and Fuzzy sys- tems,1994, 2(3) : 267 -278.
  • 2Wang M, Liu J N K. Fuzzy logic-based real-time robot navigation in unkown environment with dead ends [ J ]. Robotics and Autonomous Systems, 2008, 56 ( 7 ) : 625 - 643.
  • 3乔俊飞,樊瑞元,韩红桂,阮晓钢.机器人动态神经网络导航算法的研究和实现[J].控制理论与应用,2010,27(1):111-115. 被引量:6
  • 4Er M J, Gao Y. Robust adaptive control of robot ma- nipulators using generalized fuzzy neural networks [ J ]. IEEE Transactions on Industrial Electronics, 2003, 50 ( 3 ) : 620 - 628.
  • 5Wang J S, Lee C S G. Structure and learning in self- adaptive neural fuzzy inference systems[J]. Interna- tional Journal of Fuzzy Systems, 2000, 2( 1 ) : 12-22.
  • 6Xu W, Tso S. Sensor-based fuzzy reactive navigation of a mobile robot through local target switching [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 1999, 29(3) : 451 -459.
  • 7Toibero J M, Roberti F, Carelli R. Stable contour-fol- lowing control of wheeled mobile robot [ J ]. Robotica, 2009, 27(1): 1-12.
  • 8刘宏林,罗杨宇,李成荣.基于模糊控制器的未知环境下移动机器人导航[J].计算机仿真,2011,28(1):201-205. 被引量:12
  • 9Istvin E, Gibor H. Artificial neural network based mo- bile robot navigation[C ]//Proceedings of 6th IEEE In- ternational Symposium on Intelligent Signal Processing. Budapest, Hungary, 2009: 241- 246.
  • 10蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题[J].控制与决策,2002,17(4):385-390. 被引量:119

二级参考文献23

  • 1朱淼良,吴春明,张友军,金毅,李捷.基于多智能体的实时并发式智能机器人结构[J].高技术通讯,1995,5(10):20-24. 被引量:4
  • 2贺汉根 徐昕.增强学习在移动机器人导航控制中的应用[J].中南工业大学学报,2000,31:170-173.
  • 3徐昕.增强学习及其在移动机器人导航与控制中的应用[M].长沙:国防科技大学,2002..
  • 4BAUER A, WOLLHERR D, BUSS M. Human-robot collaboration: a survey[J]. International Journal of Humanoid Robotics, 2008, 5(1): 47 - 66.
  • 5JAN G E, CHANG K Y, PAR.BERRY I. Optimal path planning for mobile robot navigation[J]. IEEE-ASME Transactions on Mechatrioics, 2008, 13(4): 451 - 460.
  • 6BUSONIU L, BABUSKA R, DE SCHUTTER B. A comprehensive survey of multiagent reinforcement learning[J]. IEEE Transactions on Systems, Man and Cybernetics. 2008, 38(2): 156 - 172.
  • 7CARRERSA M, YUB J K, BATLLE J, et al. Application of SONQL for real-time learning of robot behaviors[J]. Robotics and Autonomous System, 2007, 55(8): 628 - 642.
  • 8ARLEO A, SMERALDI E GERSTNER W. Cognitive navigation based on nonuniform Gabor space sampling unsupervised growing networks and reinforcement learning[J]. IEEE Transactions on Neural Networks, 2004, 15(3): 639- 652.
  • 9MAX L, LIKHAREV K K. Global reinforcement learning in neural networks[J]. IEEE Transactions on Neural Networks, 2007, 18(2): 573 - 577.
  • 10TAN A H, LU N, XIAO D. Integrating temporal difference methods and self-organizing neural networks for reinforcementLeaming with delayed evaluative feedback[J]. IEEE Transactions on Neural Networks, 2008, 19(2): 230 - 244.

共引文献135

同被引文献315

引证文献37

二级引证文献278

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部