期刊文献+

无线传感器网络中多类型数据融合研究综述 被引量:6

Research of multi-type data fusion in sensor networks
在线阅读 下载PDF
导出
摘要 探讨多类型数据融合面临的新问题,从分析相关性出发,探讨多类型数据中可供融合的关系,提出数据类型属性相关的概念,并综述基于相关性的数据融合研究现状。给出了多类型数据融合研究的一般流程,按流程综述了相关文献,对各种技术进行了分析与对比,并指出了研究的难点、突破口以及未来的研究重点。 This paper focused on the new problems of muhi-type data fusion. By analyzing the correlation,it explored the correlations of multi-type data which were available for data fusion, proposed the concept of multi-type correlation, and reviewed the current situation of data fusion research that was based on correlation. It also gave the general process of research on multitype data fusion, and then reviewed related literatures acoording to the general process. It analysed and compared various kinds of technologies. At last it pointed out the difficulty and sally ports of the problems, and gave the future key points of the research.
出处 《计算机应用研究》 CSCD 北大核心 2012年第8期2811-2816,共6页 Application Research of Computers
基金 河北省自然科学基金资助项目(F2010001045) 河北省科学技术研究与发展计划资助项目(10213545) 邯郸市科学技术研究与发展计划资助项目(1121103137)
关键词 无线传感器网络 多类型数据融合 预测算法 相关性 wireless sensor networks(WSN) multi-type data fusion prediction algorithm correlation
作者简介 赵继军(1970-),男,河北邯郸人,教授,硕导,博士(后),CCF会员,主要研究方向为无线传感器网络、光通信(zhaojijun@china.com); 魏忠诚(1987-),男,河南商丘人,硕士,主要研究方向为无线传感器网络; 李志华(1978-),女,河北邯郸人,教授,博士,主要研究方向为无线传感器网络; 刘昊(1988-),男,湖北荆州人,硕士研究生,主要研究方向为无线传感器网络; 连彬(1988-),女,河北邯郸人,硕士研究生,主要研究方向为无线传感器网络.
  • 相关文献

参考文献51

  • 1YICK J, MUKHERJEE B, GHOSAL D. Wireless sensor network survey [ J ]. Computer Networks, 2008,52 ( 12 ) : 2292 - 2330.
  • 2ANASTASI G, CONTI M,FRANCESCO M D,et al. Energy conserva- tion in wireless sensor networks : a survey [ J ]. Ad hoc Networks, 2009,7 (3) :537-568.
  • 3向敏,石为人.基于数据关联性的无线传感器网络簇内数据管理算法[J].自动化学报,2010,36(9):1343-1350. 被引量:4
  • 4曹栋,乔秀全,Judith Gelernter,李晓峰,孟洛明.Mining Data Correlation from Multi-Faceted Sensor Data in Internet of Things[J].China Communications,2011,8(1):132-138. 被引量:1
  • 5FASOLO E, ROSSI M,WIDMER J,et al. In-network aggregation tech- niques for wireless sensor networks: a survey [ J]. IEEE Wireless Communications, 2007,14 ( 2 ) : 70 - 87.
  • 6XU Ying-qi, LEE W. Exploring spatial correlation for link quality esti- mation in wireless sensor networks [ C ]//Proc of the 4th Annual IEEE International Conference on Pervasive Computing and Communica- tions. 2006,200- 211.
  • 7VURAN M B,AKAN O B. Spatio-temporal characteristics of point and field sources in wireless sensor networks [ C ]//Proc of IEEE Interna- tional Conference on Communications. 2006:234-239.
  • 8JAGGI N,KAR K. Multi-sensor event detection under temporal corre- lations with renewable energy sources [ C ]//Proc of the 7th Interna- tional Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks Program. 2009:1-9.
  • 9VINYALS M,RODRIGUEZ-AGUILAR J A, CERQUIDES J. A survey on sensor networks from a muhiagent perspective[ J]. The Oomputer Journal,2011,54(3 ) :455-470.
  • 10ARDALAN A A, JAFARI M. Multi-sensor approach to settlement analysis of earth dams [ J ]. Computational Goosciencos, 2012,16 (1) :123-138.

二级参考文献87

共引文献1099

同被引文献63

  • 1PADHY P, DASH R K, MARTINEZ K, et al. A utility-based sens- ing and communication model for a glacial sensor network [ C]// AAMAS '06: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems. New York: ACM, 2003:1353 - 1360.
  • 2GUESTRIN C, BODIK P, THIBAUX R, et al. Distributed regres- sion: an efficient framework for modeling sensor network data [ C]// IPSN 2004: Third International Symposium on Information Process- ing in Sensor Networks. Piscataway: IEEE, 2004:1 - 10.
  • 3FERNANDES A L, RAGINSKY M, COLEMAN T P. A low-com- plexity universal scheme for rale-constrained distributed regression u- sing a wireless sensor network [ J]. IEEE Transactions on Signal Processing, 2009, 57(5): 1731-1744.
  • 4VURAN M C, AKAN O B, AKYILDIZ I F. Spatio-temporal corre-lation: theory and applications for wireless sensor networks [ J]. Computer Networks: The International Journal of Computer and Tel- ecommunications Networking - Special issue: In memroy of Olga Casals, 2004, 45 (3) : 245 - 259.
  • 5HEINZELMAN W R, CHANDRAKASAN A, BALAKRISHNAN H. Energy -efficient protocol for wireless microsensor net- works [ C]// Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. Washington, DC: 1EEE Computer Society, 2000:3005 -3014.
  • 6CHU D, DESHPANDE A, HELLERSTEIN J M, et al. Approximate data collection in sensor networks using probabilistic models [ C]// ICDE 2006: Proceedings of the 22nd International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 2006:48 - 53.
  • 7VY V D, AN T H, NGHE V D, et al. Data reduction algorithms for wireless sensor networks in environment monitoring and warning ap- plications [C]//CIMSIM '12: Proceedings of the 2012 Fourth Inter- national Conference on Computational Intelligence, Modelling and Simulation. Washington, DC: IEEE Computer Society, 2012:416 -421.
  • 8Intel berkeley research lab. Inte| lab data[ DB/OL]. ( 2004 - 06 - 02) [2012 -10 -01 ]. http://db, csail, mit. edu/labdata/labdata. htmi.
  • 9HUA G,CHEN C W. Correlated data gathering in wire-less sensor networks based on distributed source coding[J]. International Journal of Sensor networks,2008,4(1-2): 13-22.
  • 10GUO P, MERATNIA N,HAVINGA P J M, et al.OPS : Opportunistic pipeline scheduling in long-stripwireless sensor networks with unreliable links [ J ].Wireless networks, 2014 : 1-14.

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部