期刊文献+

一种心音信号盲源分离方法 被引量:10

Blind source separation method for heart sound signal
在线阅读 下载PDF
导出
摘要 为了有效实现单路心音混合信号的盲分离,本文提出了一种基于EMD分解和独立成分函数的单路含噪心音信号盲源分离的方法。首先讨论了单路混合信号的分离模型,含噪信号预处理的方法,以及如何利用EMD变换进行窄带分层和获取独立成分函数的技术;然后通过独立成分函数作为基函数对单路含噪心音信号进行分解,使单路心音信号由一维向量转变为多维向量,从而实现心音信号的盲源分离;最后通过实际的心音分离实验,验证了本方法的实用性,其分离结果的相似度达到0.9792。 Based on empirical mode decomposition(EMD) layered technique and independent primary functions, a signal processing technique to accomplish blind source separation given only a single-channel mixture heart sound signal is introduced in the paper. Firstly the single-channel mixed heart sound signal separation model, the noisy signal pre-processing methods before BSS, and how to carry on the layered using EMD to gain the technique of the independent primary functions are discussed. Then through a combination of independent primary function into the one-way mixed heart sound signal, multi-dimensional vector is translated from one-dimensional vector, therefore its blind source separa- tion is achieved. Finally through the signal separation experiment for single-channel mixed noisy heart sounds, the validity and usability of the method is verified, the similarity of separation result is 0.9792.
出处 《电子测量与仪器学报》 CSCD 2012年第6期498-502,共5页 Journal of Electronic Measurement and Instrumentation
关键词 盲源分离 经验模值分解 独立基函数 单路含噪信号 Blind source separation empirical mode decomposition independent primary function sin-gle-channel noise signal
作者简介 孙科学:1981年出生,硕士,现为南京邮电大学电子科学与工程学院讲师。主要研究方向为嵌入式技术与通信信号处理。E-mail:sunkx@njupt.edu.cn成谢锋:1955年出生,现为南京邮电大学电子科学与工程学院教授。主要研究方向为智能信息处理、智能仪表。E—mail:chengxf@njupt.edu.cn
  • 相关文献

参考文献10

二级参考文献38

  • 1凌燮亭.近场宽带信号源的盲分离[J].电子学报,1996,24(7):87-92. 被引量:5
  • 2吴延军,徐泾平,赵艳(综述),程敬之(审校).心音的产生与传导机制[J].生物医学工程学杂志,1996,13(3):280-288. 被引量:35
  • 3Cichocki A and Amari S.Adaptive Blind Signal and Image Processing:Learning Algorithms and Application[M].New York:Wiley Press,2002:24-42.
  • 4Souloumiac A.Nonorthogonal joint diagonalization by combining givens and hyperbolic rotations[J].IEEE Transactions on Signal Processing,2009,57(6):2222-2231.
  • 5Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634.
  • 6Vicente Z and Pierre C.Robust independent component annlysis by iterative maximization of the kurtosis contrast with algebraic optimal step size[J].IEEE Transactions on Neural Networks,2010,21(2):248-261.
  • 7Bell A and Sejnowski T.An information maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7(6):1129-1159.
  • 8Tang Y and Li J P.Normalized natural gradient in independent component analysis[J].Signal Processing,2010,90(9):2773-2777.
  • 9Ye J M,Jin H H,Lou S T,and You K J.An optimized EASI algorithm[J].Signal Processing,2009,89(3):333-338.
  • 10Zhu X L and Zhang X D.Adaptive RLS algorithm for blind source separation using a natural gradient[J].IEEE Signal Processing Letters,2002,9(12):432-435.

共引文献136

同被引文献113

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部