期刊文献+

带装载组合约束的一维装车问题算法研究 被引量:5

One-dimensional Packing Problem with Loading Combination Constraints
原文传递
导出
摘要 提出带装载组合约束的一维装车问题,有n个属于l种类型的相同(单位)尺寸的物品。有w辆车,每辆车对这l种类型的物品有几种装载组合,不同车辆的装载组合不同,每辆车选择一种装载组合并严格按照物品组合进行装载,优化目标是在满载的情况下装载最多的物品。首先建立线性混合整数规划模型。其次,提出基于贪婪技术的启发式算法。最后,利用ILOG Cplex进行数值实验和参数的敏感性分析。 This paper introduces the one-dimensional packing problem with loading combination constraints. There are n items which belong to l types of the same (unit) size. There are w vehicles, each has several loading combinations for these l types, different vehicles having different load combinations, each vehicle chooses a combination and loads items in strict accordance with the combination of loading. Optimization goal is to maximize the loaded items on condition that each vehicle is fully loaded. Firstly, a linear mixed integer programming model is built. Secondly, a heuristics algorithm based on greed technology is proposed. Finally, numerical experiments using ILOG Cplex and parameter sensitivity analysis are conducted.
作者 张江静 陈峰
出处 《工业工程与管理》 CSSCI 北大核心 2012年第3期90-96,共7页 Industrial Engineering and Management
基金 国家自然科学基金资助项目(70771063)
关键词 一维装车问题 装载组合 混合整数线性规划 启发式算法 敏感性分析 one-dimensional packing problem loading combination mixed integer linearprogramming heuristics sensitivity analysis
作者简介 张江静(1987-),山东临沂人,硕士研究生,主要研究方向为物流与供应链管理。
  • 相关文献

参考文献12

  • 1Liu C L, James W. Scheduling Algorithms for multiprogramming in a hard-real-time environment[J]. Journal of the Association for Computing Machinery, 1973,20 : 46-61.
  • 2Cho H, Ravindran B, Jensen E D. An Optimal Real-Time Scheduling Algorithm for Multiprocessors [C]. 27th IEEE International Real-Time Systems Symposium, 2006 : 101-110.
  • 3Kashyap S R,Khuller S. Algorithms for non-uniform size data placement on parallel disks[J]. Algorithms, 2006,60 : 144-167.
  • 4Xavier E C,Miyazawa F K. The class constrained bin packing problem with applications to video on demand[J]. Theoretical Computer Science, 2008,393 : 240-259.
  • 5Shachnai H, Tamir T. Polynomial time approximation schemes for class-constrained packing problems [J]. Journal of Scheduling, 2001,4: 313-338.
  • 6杨鼎强,王晨.受位置约束的有色装箱问题[J].计算机工程与设计,2006,27(20):3864-3866. 被引量:2
  • 7Epstein L, Imreh C, Levin A. Class constrained bin covering [J]. Theory of Computer System, 2010,46 : 246-260.
  • 8Xavier E C, Miyazawa F K. A one-dimensional bin packing problem with shelf divisions [J]. Discrete Applied Mathematics, 2008,156 : 1083-1096.
  • 9Marques F P, Arenales M. The constrained compartmentalized knapsack problem [J]. Computer and Operations Research, 2007,34:2109-2129.
  • 10HotoR, Arenales M, Maculan N. The one dimensional compartmentalized cutting stock problem: a case study. European[ J ]. Journal of Operational Research, 2007, 183 : 1183-1195.

二级参考文献8

  • 1Liu C L,Layland J.Scheduling algorithms for multiprogramming in a hard real-time environment[J].Journal ACM,1973,10(1):174-189.
  • 2Hall L A.Approximation algorithms for scheduling[M].Boston:Approximation for NP-hard problems,PWS Publishing,1996.1-45.
  • 3Khemka A,Shyamasundar R K.An optimal multiprocessor realtime scheduling algorithm[J].Journal of Parallel and Distributed Computing,1997,43(1):37-45.
  • 4Garey M R,Johnson D S.Computers and intractability:A guide to the theory of NP-completeness freeman[M].San Francisco:CA,1979.
  • 5Johnson D S,Demers A,Ullman J D,et al.Worst-case performance bounds for simple one-dimensional packing algorithms[J].SIAM Journal of Computing,1974,3(4):299-325.
  • 6Johnson D S.Fast algorithms for bin packing[J].Journal Computer Systems Science,1974,(3):272-314.
  • 7Falkmauer E.Ahybird grouping genetic algorithm for bin packing[J].Journal of Heuristics,1996,2(1):5-30.
  • 8顾晓东,许胤龙,陈国良,顾钧.有色装箱问题的在线近似算法[J].计算机研究与发展,2002,39(3):335-341. 被引量:10

共引文献1

同被引文献27

引证文献5

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部