期刊文献+

基于蛙跳算法的无线传感器网络节点定位 被引量:3

Wireless sensor network node localization based on shuffled frog leaping algorithm
在线阅读 下载PDF
导出
摘要 为减小测距误差对无线传感器网络定位精度的影响,将蛙跳算法应用到距离式定位算法的位置计算阶段中,提出了蛙跳定位算法。该算法在适应度函数设计中,根据节点间的测距信息对锚节点进行了加权处理,以降低测距误差对定位结果的影响。结合最小最大法构造初始种群,使其包含更多可行解,从而提高算法效率。仿真结果表明,与采用极大似然估计法或总体最小二乘法来进行位置计算的距离式定位算法相比,该算法有效降低了距离误差对定位精度的影响,具有较高的定位精确度和稳定性,是一种实用的无线传感器网络节点定位方法。 In order to reduce the impact of measurement error on wireless sensor network localization, shuffled frog leaping algorithm is applied to location calculation of rang-based localization. This paper proposes a shuffled frog leaping localization algorithm. This algorithm designs fitness function weighted according to anchor nodes, thereby reducing effect of measurement error on result. At the same time, this algorithm constructs initial solution set based on rain-max method, which leads to enhancement efficiency of algorithm. In the simulation experiments, compared with maximum likelihood estimation algorithm and total-least square algorithm, the shuffled frog leaping localization algorithm reduces the impact of measurement error effectively and has high accuracy. Therefore, the shuffled frog leaping localization algorithm is a practical localization solution for the wireless sensor network.
出处 《计算机工程与应用》 CSCD 2012年第20期126-130,186,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.60903168) 四川师范大学青年基金资助项目(No.10QNL04)
关键词 无线传感器网络 距离式定位算法 最小最大法 蛙跳算法 wireless sensor network range-based localization algorithm min-max algorithm shuffled frog leaping algorithm
作者简介 葛宇(1981-),男,讲师,CCF会员,主要研究方向:计算智能; 梁静(1979-),女,讲师,CCF会员,主要研究方向:图形图像; 许波(1982一),男,讲师,CCF会员,研究方向:计算智能、云计算、数字媒体; 余建平(1979-),男,博士,讲师,研究方向:群体智能、网络优化。E.mail:geyufly@189.cn
  • 相关文献

参考文献11

二级参考文献150

共引文献828

同被引文献35

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:673
  • 2匡兴红,邵惠鹤.基于传感器网络的气体源定位方法研究[J].系统仿真学报,2007,19(7):1464-1467. 被引量:17
  • 3Wang W,Srmivasan V,Wang B,et al.Coverage for tar- get localization in wieless semor neworks[J]. IEEE Tramactiom on Wirelcss Communications, 2008,7(2): 667-676.
  • 4冯晨.无线传感器网络定位精度优化方法研究[D].南京:南京邮电大学,2013.
  • 5Akyildiz I F. Wireless Sensor Network: A Survey[J]. Computer Networks, 2002, 38(4): 393-422.
  • 6Rabaey, J.M., Ammer MJ, da Silva Jr. JL, Patel D,Roundy S.Picorodio supports ad hoc ultralow power wireless networking [J].Computer, 2000,33(7):42-48.
  • 7Savarese C,Rabaey JM,Beutel J.Locationing in distri- buted ad-hoc wireless sensor network. In: Proc. of the 2001 IEEE Int'l Conf. on Acoustics, Speech, and Signal. Vol.4, Salt Lake [C]. IEEE Signal Processing Society, 2001: 2037- 2040.
  • 8Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: harmony search [J]. Simulation, 2001, 76(2):60-68.
  • 9Kim JH, Geem ZW, Kim ES. Parameter estimation of the nonlinear muskingum model using harmony search[J]. Joumal of the American Water Resources Association, 2001,37(5): 1131-1138.
  • 10Kang SL, Geem ZW.A new structural optimization me- thod based on harmony search algorithm[J]. Computers and Structures, 2004,82(9-10):781-798,.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部