期刊文献+

多方式进化遗传算法及其优化波纹薄壁管的耐撞性

Multi-mode Evolution Genetic Algorithm and Optimizaton of Thin-Walled Tube with Folding Patterns Baesd on Crashworthiness
原文传递
导出
摘要 通过提出一种多方式进化遗传算法的途径改进了遗传算法,并用于求解汽车新型波纹薄壁管耐撞性优化问题。文中采用响应面法近似建立金字塔形波纹薄壁管的优化模型,在多方式进化遗传算法中采用多种编码方式、选择策略、交叉和变异操作,同时还设计了类似遗传学中染色体结构变异的倒位操作,有效改善了群体多样性。对于函数实例测试的结果显示,该算法克服了遗传算法有时局部收敛的缺陷,提升了收敛速度。在波纹薄壁管耐撞性优化问题上的应用研究表明了本算法在求解此类优化问题上的有效性和方便性。优化后波纹管吸能提高40%以上,显著改进了初始设计,进一步验证了多方式进化遗传算法求解此类优化问题的实用性。 A multi-mode evolution genetic algorithm is proposed to improve the simple genetic algorithm and to solve the crashworthiness optimization design problems for a new type of thin-walled tube with folding patterns. Structural crashworthiness analysis is a highly non-linear transient dynamic process, involving a very complex relationship between the objective function (energy absorption value) and the design variables (wave height and angle) without an exphcit function expression to optimize the design of the thin-walled tube. The optimization model of the thin-walled tube established by the Response Surface Method (RSM) and various encoder modes, the selection strategy, the crossover and the mutation operation are used in the multi-mode evolution improved genetic algorithm, and an inversion operation, similar to the genetic variation in the chromosome structure, effectively improves the population diversity. Examples of function test results show that the algorithm overcomes the local convergence of the GA and increases the convergent speed. The application of the multi-mode evolution genetic algorithm for crashworthiness optimization of the thin-walled tube with folding patterns shows the efficiency and convenience of this algorithm to solve such optimization problems. The energy absorption of the optimized structure is increased by more than 40%, a significant improvement over the initial design.
出处 《科技导报》 CAS CSCD 北大核心 2012年第18期32-36,共5页 Science & Technology Review
基金 国家自然科学基金项目(11172013 11072009) 北京市自然科学基金项目(3122004) 大连理工大学工业装备结构分析国家重点实验室基金项目(GZ0819)
关键词 遗传算法 多方式进化 耐撞性 波纹薄壁管 结构优化 genetic algorithm multi-mode evolution crashworthiness thin-walled tube structural optimization
作者简介 孙海龙,研究方向为结构和多学科优化,电子信箱:hpu350@126.com; 隋允康(通信作者,中国科协所属全国学会个人会员登记号:S030000050S),教授,研究方向为结构和多学科优化,电子信箱:ysui@bjut.edu.cn
  • 相关文献

参考文献11

二级参考文献56

  • 1刘刚,何麟书.双赌轮选择遗传算法[J].北京航空航天大学学报,2005,31(8):930-933. 被引量:11
  • 2邝航宇,金晶,苏勇.自适应遗传算法交叉变异算子的改进[J].计算机工程与应用,2006,42(12):93-96. 被引量:96
  • 3唐继甲,江绍基.基于精英选择自适应变异遗传算法的膜系优化设计[J].光学仪器,2006,28(4):43-47. 被引量:8
  • 4钟文亮,詹志辉,郭锐鹏,胡晓敏,张军.求解TSP的交配算子设计策略[J].计算机工程与设计,2007,28(10):2408-2411. 被引量:7
  • 5Sivanandam N, Deepa S N. Introduction to Genetic Algorithms [ M ]. Springer,2007.
  • 6Mak K L,Y S Wong. Design of integrated production-inventory-distribution systems using genetic algorithm[ C]//Proceedings of the first International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications. Glasgow, UK, 1995:454-460.
  • 7Hwang Heung Suk. Design of supply-chain logistics systems considering service level [ J ]. Computers & Industrial Engineering, 2002,43 ( 1-2 ) : 283 -297.
  • 8Zhou G, Min H, Gen M. The balanced allocation of customers to multiple distribution centers in the supply chain network: a genetic algorithm approach [ J ]. Computers & Industrial Engineering,2002,43 ( 1-2 ) : 251-261.
  • 9Fulya Altiparmk, et al. A genetic algorithm approach for multi-objective optimization of supply chain networks [ J ]. Computers and Industrial Engineering,2006,51 ( 1 ) : 196-215.
  • 10Sivanandam N, Deepa S N. Introduction to Genetic Algorithms[ M]. Springer,2007.

共引文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部