期刊文献+

基于EMD和ICA的单通道语音盲源分离算法 被引量:5

Algorithm for EMD and ICA-based Single-channel Voice Blind Source Separation
在线阅读 下载PDF
导出
摘要 针对单通道语音信号盲分离的问题,结合盲源分离和经验模式分解的优点,提出了一种基于经验模式分解的单通道语音信号源数估计和盲源分离方法。对语音混合信号进行经验模式分解,利用贝叶斯算法估计语音源数目,根据源信号数目重组多通道语音混合信号,并采用独立分量分析实现语音信号的盲分离。仿真实验表明,使用此法能有效地估计通道语音信号源数和分离盲源。 In view of the problem of the single channel speech signal blinding separation, using the advantages of the blinding source separation and the empirical mode decomposition, this article proposes a method for estimating the number of the single channel speech signal source and separating the blinding source. It adopts the empirical mode to disintegrating the speech signals, using the Baye algorithm to estimate the speech source number, reorgani- zing the muhichannel pronunciation signal according to the source signal number, and realizing the blinding separation by the method of the isolated component analysis. The simulation experiments show that the proposed method can estimate the number of the single channel speech signal source and separate the blinding source effectively.
出处 《电子科技》 2012年第7期66-68,75,共4页 Electronic Science and Technology
基金 广西研究生教育创新计划基金资助项目(2010105950804M35)
关键词 盲源分离 独立分量分析 经验模式分解 本征函数 blind source separation ICA EMD IMF
作者简介 颜学龙(1962-),男,硕士,教授,硕士生导师。研究方向:测试计量技术及仪器,信息集成及边界扫描。 赵志强(1985-),男,硕士研究生。研究方向:计算机辅助测试,信号检测及处理。
  • 相关文献

参考文献11

  • 1杨海滨,张军.基于模型的单通道语音分离综述[J].计算机应用研究,2010,27(11):4025-4031. 被引量:4
  • 2贾云龙,张永刚,姚忠山.基于FastlCA算法的混合声信号分离技术[J].声学技术,2009(2):18-20.
  • 3BOGDAN M, MAARTEN D V, IVAN G C, et al. Combining EMD with ICA for extracting independent sources fromsingle channel and two - channel data [ C]. Argentina:32nd Annu- M International Conference of the IEEE EMBS Buenos Aires, August 31 - September 4,2010.
  • 4COMON P. Independent component analysis:a new concept [ J ]. Signal Processing, 1994,36 ( 3 ) :287 - 314.
  • 5Lu Yao, LI Shuangtian. Underdetermined blind source sepa- ration of anechoic speech mixtures in the time - frequency domain [ C ]. ICSP2008 Proceedings,2008 : 22 - 25.
  • 6L! Yuanqing, AMARI S I,ANDRZEJ C, et al. Probability es- timation for recoverability analysis of blind source separation based on sparse representation [J]. IEEE Transactions on Information Theory,2006,52(7) :3139 -3152.
  • 7DAVIES M E, JAMES C J. Source separateion using singlechannel ICA [J]. Signal Processing,2007,87(8) :1819 -1832.
  • 8李晋,王景芳,高金定.基于经验模态分解和递归图的语音端点检测算法[J].计算机工程与应用,2010,46(34):132-135. 被引量:6
  • 9毋文峰,陈小虎,苏勋家.基于经验模式分解的单通道机械信号盲分离[J].机械工程学报,2011,47(4):12-16. 被引量:55
  • 10刘佳,杨士莪,朴胜春.基于EEMD的地声信号单通道盲源分离算法[J].哈尔滨工程大学学报,2011,32(2):194-199. 被引量:23

二级参考文献92

  • 1姜卫东,陆佶人,张宏滔.基于单个频点的水声信号盲源分离[J].电子与信息学报,2005,27(4):532-535. 被引量:5
  • 2吕勇,徐金梧,李友荣.递归图和近似熵在设备故障信号复杂度分析中的应用[J].机械强度,2006,28(3):317-321. 被引量:20
  • 3李凌,曾以成,雷雄国.EMD在说话人辨认中的应用[J].湘潭大学自然科学学报,2006,28(3):108-111. 被引量:6
  • 4闫润强,朱贻盛.基于信号递归度分析的语音端点检测方法[J].通信学报,2007,28(1):35-39. 被引量:8
  • 5CHERRY E C. Some experiments on the recognition of speech, with one and with two ears [ J ]. Journal of the Acoustical Society of America, 1953,25 ( 5 ) : 975- 979.
  • 6CICHOCKI A,PARK H M,LEE S Y. Blind source separation and independent component analysis: a review [ J ]. Neural Information Processing-Letters and Reviews ,2005,6( 1 ) : 1-57.
  • 7BELL A J, SEJNOWSK! T J. An information maximization approach to blind separation and blind deconvolution[ J]. Neural Computation, 1995,7(6) :1129-1159.
  • 8DOUGLAS S C. Blind separation of acoustic signals[ M ]//BRANDSTEIN M, WARD D. Microphone Arrays: Signal Processing Techniques and Applications. New York:Springer,2001.
  • 9SMARAGDIS P. Blind separation of convolved mixtures in the frequency domain [ J ]. Neurocomputing, 1998,22 ( 1 ) :21 - 34.
  • 10IKEDA S, MURATA N. A method of ICA in time-frequency domain [ C ]//Proc of International Conferenee on Independent Component Analysis and Signal Separation. 1999:365-371.

共引文献85

同被引文献38

  • 1李秋娜,袁嗣杰.混合通信侦察信号分离技术研究[J].仪器仪表学报,2006,27(z2):1396-1398. 被引量:1
  • 2Mijovi B, Devos M, Gligorijevic I, et al. Source Separation from Single-channel Recordings by Combining Empirical Mode Decomposition and Independent Component Analysis [J].IEEE Transaction on Biomedical Engineering, 2010, 57 (9) :2 188-2 196.
  • 3Huang N E. The Empirical Mode Decomposition and the Hil bert Spectrum for Nonlinear and Non-stationary Time series Analysis[J]. Royal Society Proceedings on Mathematical, Physical,and Engineering Scienees,1998,454(3) :903 995.
  • 4Wu Z, Huang N E. Ensemble Empirical Mode Decomposition:A Noise-assisted Data Analysis Method[J]. Adv. Adaptive Data Anal. ,2009,1(1) :1-41.
  • 5Nisha Goswami, Mousmita Sarma, Kandarpa Kumar Sarma. Empirical Mode Decomposition Based Reconstruction of Speech Signal in Noisy Environment[C]//Proceedings of the 2014 International Conference on Signal Processing and Inte- grated Networks (SPIN). Piscataway: IEEE Press, 2014 : 760 765.
  • 6Peng Tianliang, Liu Zengli, Chen Qingtao, et al. FastlCA- EMD Algorithm for Analysis of the Mixed S!gnals in Noise [C]// Signal Processing, Communications and Computing (ICSPCC) 2011 :Proceedings of the 2011 IEEE International Conference on Digital Object Identifier. Piseataway: IEEE Press,2011,1-4.
  • 7P Tichavsky, Z Koldovsky, E Oja. Performance analysis of the FastICA algorithm and Cramer-Rao bounds for linear independent component analysis[ J ]. IEEE Transactions on Signal Processing, 2006,54(4) : 318-332.
  • 8K Zbynek, T Petr, E Oja. Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer-Rao lower bound[ J]. IEEE Transactions on Neural Networks, 2006,17(5) : 1256 - 1277.
  • 9M Taoufiki, A Adib, D Aboutajdine. Blind separation of any source distributions via high-order statistics [ J ]. Signal Process- ing, 2007,87(8) :1882 - 1889.
  • 10张朝柱,张健沛,孙晓东.基于Hilbert-Huang变换的语音信号分离[J].计算机应用,2009,29(1):227-229. 被引量:3

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部