摘要
指出失业预警系统的建模是一个小样本、高维度、非线性、存在噪音数据的复杂的建模问题,重点探讨了基于回归分析技术对失业预警系统进行建模的理论、方法与步骤。讨论了常见的缺失数据处理、数据归一化以及特征降维等数据预处理方法;进一步分析了最小二乘回归、Logistic回归、岭回归、BP神经网络以及支持向量回归五种回归技术;最后基于广东省的社会经济调查数据对五种回归方法进行了实证分析,实验结果表明:在对失业率的预测上,支持向量回归预测效果最好,最小二乘回归、岭回归与BP神经网络次之,Logistic回归预测效果最差。
Unemployment early-warning system modeling is a special and complex problem with small sample,high dimension,nonlinearity,and noise data.The theory,method,and procedure on modeling unemployment early-warning systems based on regression analysis are mainly discussed.Firstly,the pre-processing methods are given,including missing data processing,data scaling,and dimension reducing.Five regression techniques are further analyzed: least square regression,Logistic regression,ridge regression,BP neural network,and support vector regression.Experimental results based on social and economical investigation data from Guangdong Province show that,support vector regression outperforms the other four methods,logistic regression is worst,and the forecast accuracies of least square regression,ridge regression,and BP neural network are between those of support vector regression and logistic regression.
出处
《中国软科学》
CSSCI
北大核心
2012年第5期138-147,共10页
China Soft Science
基金
北京市自然科学基金项目(4122068)
国家科技部软科学研究计划项目(2009GXS5B071)
广东省人力资源和社会保障厅委托项目
关键词
失业预警
回归分析
数据预处理
unemployment early-warning
regression analysis
data pre-processing
作者简介
作者简介:李宏(1977-),女,河北秦皇岛人,中国人民大学劳动人事学院,博士生,人力资源和社会保障部劳动科学研究所就业与人力资源市场研究室副主任,副研究员。