期刊文献+

基于小波变换的多分类器融合分类系统 被引量:3

A CLASSIFYING SYSTEM WITH MULTIPLE CLASSIFIER FUSION BASED ON WAVELET TRANSFORMATION
原文传递
导出
摘要 利用计算机进行模式识别需要完成模式特征的选取、特征维数的压缩以及分类器的设计。本文在人脸识别的研究中,根据选取的代数特征,提出了一种基于正交小波变换的多分类器融合分类系统。首先利用正交小波变换将高维特征变换为多个低维的特征,达到特征维数压缩的目的;然后采用基于模糊的BP神经网络(FB-PNN)并行地对这些特征空间的模式进行分类;最后,利用FBPNN对这些分类结果进行融合,得到最终的分类结果。实验结果表明这种分类系统具有很好的分类效果。 In pattern recognition, feature extraction, ieature dimension compression, and classifier design need to be accomplished. In the area of face recognition, on the basis of algebraic feature extracted, a classifying system with multiple classifier fusion based on wavelet transformation is proposed. Firstly, the high- dimension feature space is transformed into several low - dimension feature spaces by orthonormal wavelet, with which the objective of the feature dimension compression is attained: then, the patterns of the feature spaces are parallelly classified by the fuzzy- based BP neural network(FBPNN): finally, those classified result is fusioned by a FBPNN and the final classified result is obtained. The experiments show that the proposed classifying system attain a satisfactory clasified effect.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2000年第1期22-27,共6页 Pattern Recognition and Artificial Intelligence
基金 国家"973"重点基础研究发展规划 国家"211"基金
关键词 模式识别 图像识别 小波变换 多分类器融合 Pattern Recognition, Features, Orthonormal Wavelet, Neural Network, Fusion
  • 相关文献

二级参考文献30

同被引文献14

  • 1杨绍国,贺振华.小波分析在地球物理信息融合中的应用[J].地球物理学报,2001,44(z1):248-251. 被引量:1
  • 2赵健,周明全,谢端,卜起荣.SAR图像小波域消噪方法[J].西北大学学报(自然科学版),2005,35(1):17-20. 被引量:3
  • 3邵远,何发昌,罗志增.多传感器信息融合浅析[J].电子学报,1994,22(5):73-79. 被引量:28
  • 4陈逢时.子波变换理论及其在信号处理中的应用[M].北京:国防工业出版社,1999.17-39.
  • 5Oliver, Quegan. Understanding synthetic aperture radar images[ M]. Norwood, MA:Artech House Inc, 1998.
  • 6Mallat S G A. Theory for multiresolution signal decomposition: the wavelet representation [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence 1989, 11 (7) : 674 - 693.
  • 7Mallat S G, Hwang W L. Singularity detection and processing with wavelets [ J ]. IEEE Trans. Information Theory, 1992, 38 (2): 617-643.
  • 8Donoho D L. Nonlinear wavelet methods for reeorvery of signals densities and spectra from indirect and noisy data [ J]. Proc. of Symsia in Applied Mathematics, 1993, 47 : 173 - 205.
  • 9Donoho D L. De-noising by soft-thresholding [ J ]. IEEE Trans. Information Theory, 1995, 41(5) : 613 -627.
  • 10Stain C. Estimation of the mean of a muhivarials normal distribution[J]. Ann. Stat., 1981, 9:1135-1151.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部