摘要
讨论了一端固定一端自由变截面直杆的临界荷载和过屈曲行为 .首先 ,在Kirchihoff假设下建立了可伸长杆过屈曲问题的控制方程 .然后利用常微分方程数值求解方法得到了数值意义上的精确解答 ,给出了临界荷载与截面变化参数之间的关系以及不同截面变化参数的变截面杆的过屈曲行为与形状之间的关系 .算例表明 ,与同样体积的等截面杆相比 ,变截面杆不仅具有较大的临界荷载 。
The critical load and postbuckling behavior of a straight compressed rod with varying cross section and one end freed while the other fixed are discussed. The control equation of extendible rods postbuckling problem is first established on the Kirchihoff assumption. Then, using numerical solution of ordinary differential equations, an exact solution to the control equation is obtained in the numerical sense. The relationship between critical load and the varying parameters of cross section as well as that between rods postbuckling behavior and the shape of cross section are also given. A calculation practice shows that, compared to the rod with identical volume but uniform cross section, the rod with varying cross section possesses not only greater critical load but also better postbuckling behavior. [WT4”HZ]
出处
《甘肃工业大学学报》
2000年第1期108-112,共5页
Journal of Gansu University of Technology
关键词
临界荷载
微分方程
过屈曲
悬臂变截面压杆
varying cross section
critical load
differential equation
postbuckling