期刊文献+

一种基于人工蜂群优化的有序盲源抽取方法 被引量:2

A Bind Source Extraction Method with the Order Based on Artificial Bee Colony Optimization
在线阅读 下载PDF
导出
摘要 提出了一种基于人工蜂群优化的盲源抽取方法,该方法首先根据源信号的高阶统计特性构造了用于估计分离向量的目标函数,然后通过人工蜂群算法优化其函数获得最佳分离向量,并达到逐次恢复源信号的目的。仿真实验结果表明,该方法不仅能依4阶累积量绝对值降序地实现源信号的盲分离,还能同时分离服从亚高斯分布的图像信号和超高斯分布的语音信号。 To separate source signals one by one, we consider the blind source extraction problem of instantaneous mixtures using artificial bee colony optimization algorithm. A goal function is constructed first by exploiting the higher statistics prosperities of source signals, then the optimal extracted vectors are determined through maximizing the goal function using artificial bee colony optimization algorithm, so as to separate source one by one. The simulation results show that the method can achieve the blind separation for mixed signals in decreasing order of absolute kurtosis. Moreover, it can separate images of sub-gaussian distribution and speeches of super-gaussian distribution.
出处 《电信科学》 北大核心 2012年第5期43-48,共6页 Telecommunications Science
基金 国家自然科学基金资助项目(No.51179074)
关键词 人工蜂群 盲源抽取 目标函数 超高斯分布 亚高斯分布 artificial bee colony, blind source extraction, goal function, super-gaussian distribution, sub-gaussian distribution
  • 相关文献

参考文献16

  • 1Angerer C, Langwieser R, Rupp M. RFID reader receivers for physical layer collision recovery. IEEE Transactions on Communication, 2010, 58(11): 3 526-3 537.
  • 2Friman O, Borga M, Lundberg P. Exploratory fMRI analysis by autocorrelation maximization. NeuroImage, 2002, 16(2): 1 256- 1 260.
  • 3王荣杰,周海峰,詹宜巨.船舶噪声的自适应分离技术[J].中国航海,2011,34(3):10-14. 被引量:6
  • 4Persia L D, Milone D, Rufiner H L. Perceptual evaluation of blind source separation for robust speech recognition. Signal Processing, 2008, 88(10): 2 578-2 583.
  • 5I-Iallez H, De Vos M, Vanrumste B, et al. Removing muscle and eye artifacts using blind source separation techniques in ictal EEG source imaging. Clinical Neurophysiology, 2009, 120(7): 1 262-1 272.
  • 6Cruces-Alvarez S A, Cichocki A, Amari S. From blind signal extraction to blind instantaneous signal separation: criteria, algorithm and stability. IEEE Transactions on Neural Network, 2004, 15(4): 859-873.
  • 7Wei Liu, Danilo P M. A normalized Kurtosis-based algorithm for blind source extraction from noisy measurements. Signal Processing, 2006, 86(7): 1 550-1 585.
  • 8Shi Z W, Zhang S C. Blind source extraction using generalized autocorrelations. IEEE Transactions on Neural Networks, 2007, 18(5): 1 516-1 524.
  • 9Zhang Hongjuan, Shi Zhenwei, Guo Chonghui. Blind source extraction based on generalized autocorrelations and complexity pursuit. Neurocomputing, 2009, 72(10-12): 2 556-2 562.
  • 10Karaboga D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-TR06, Kayseri: Erciyes University, 2005.

二级参考文献5

共引文献20

同被引文献25

  • 1BENAROYA L, BIMBOT F, GRIBONVAL R. Audio source separation with a single sensor [ J]. IEEE Transactions on Audio, Speech, and language Processing, 2006, 14( 1 ) : 191-199.
  • 2GIDIRHAR K, SHYNK J J, MATHUR A. Nonlinear techniques for the joint estimation of co-channel signals [J]. IEEE Transactions on Communications, 1997,45 (4) : 473- 484.
  • 3GAO P, CHANG E C, WYSE L. Blind separation of fetal ECG from single mixture using SVD and ICA [ C ] //ICICS- PCM 2003. New York: IEEE press, 2003: 1418-1422.
  • 4CICHOCKI A, AMARI S. Adaptive blind signal and image processing [ M ]. New York: Wiley, 2002.
  • 5JANG G J, LEE T W. A maximum likelihood approach to single-channel source separation [ J ]. Journal of Machine Learning Research, 2004, 4(7/8) : 1365-1392.
  • 6KHADEMUL ISLAM MOLLA M, HIROSE K. Single-mixture audio source separation by subspace decomposition of Hil- bert spectrum [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(3) : 893-900.
  • 7HONG H B, LIANG M. Separation of fault features from a single-channel mechanical signal mixture using wavelet decom- position [J]. Mechanical Systems and Signal Processing, 2007, 21 (5) : 2025-2040.
  • 8BOGDAN M, MAARTEN D V, IVAN G. Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis [J]. IEEE Transactions on Biomedical Engineering, 2010, 57(9): 2188-2196.
  • 9TENGTRAIRAT N, GAO B, WOO W L. Single-channel blind separation using Pseudo-stereo mixture and complex 2-D histogram [J]. IEEE Transactions on Neural Networks and Learning Systems, 2013,24( 11 ) : 1722-1735.
  • 10KIRBIZ S, GVNSEL B. Perceptually enhanced blind single-channel music source separation by non-negative matrix fac- torization [J]. Digital Signal Processing, 2013,23(2) : 646-658.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部