摘要
机械制造、医疗设备、信息和军事装备等行业都需要应用到数控技术,而数控技术的核心问题在于如何提高电机运行速度和转子位置的控制精度。为了进一步提高对电机速度和位置的控制精度,并且便于系统的数字化实现,给出了一种改进的永磁同步电机速度与位置的计算方法,并在此方法的基础上,给出了一种能够使电机在低速运行时仍然能够具有良好的速度与位置响应的策略。为了解决电机在低速运行时速度与位置估算不准确的问题,在应用了永磁同步电机无位置传感器状态估计方法的基础上,引入了适用于转子磁场定向矢量控制系统的PI调节器控制环节。当电机在低速状态运行时(系统规定低速运行范围在5~20 r/min),系统自动切换至低速运行模式,PI调节器对转矩电流的误差项进行采样,来获得电机的转速信息。通过仿真实验,可以很清晰地看出,系统引入PI调节环节以后,电机无论是在高速运行还是在低速运行时都具有较为理想的运行效果。
The numerical control technology is widely applied to the machinery manufacturing, medical equipment, information, military equipment and other industries, and the core problem of the numerical control technology is to improve the motor speed and the rotor position control accuracy. To further improve the motor speed and position accuracy, and the implementation of digital systems, an improved speed and position calculation method of the permanent magnet synchronous motor was given. Based on the above method, a strategy to run the motor at low speeds with good speed and location response was given. To solve the inaccurate problem of speed and location estimate of motor working at low speed, based on the application of permanent magnet synchronous motor with position sensorless, PI regulator was introduced to the rotor field oriented vector control system. When the motor was running at low speed (speed was between 5 r/min and 20 r/min), the system automatically switched to the low speed mode, and the error of the torque current was samples by PI regulator to obtain the motor speed information. The simulation results show that after the introduction of PI regulator, the motor has an excellent running effect working either at low speed or at high speed.
出处
《电源技术》
CAS
CSCD
北大核心
2012年第5期740-743,共4页
Chinese Journal of Power Sources
关键词
数控
永磁同步电机
无位置传感器
PI调节器
NC
permanent magnet synchronous motor
position sensorless
PI regulator
作者简介
向霞(1978-),女,湖南省人,讲师,硕士,主要研究方向为计算机应用。