期刊文献+

扰动重力梯度张量单分量和组合分量最小二乘配置法模型的建立 被引量:6

Construction of the least squares collocation models for single component and composite components of disturbed gravity gradients
在线阅读 下载PDF
导出
摘要 建立了利用扰动重力梯度张量Tzz分量和Txx+Tyy、Tzz-Txx-Tyy组合分量确定地球重力场的调和分析法模型,进一步推导了扰动重力梯度张量对角线三分量的自协方差和互协方差函数的级数展开式,推导了单分量、组合分量与重力位系数之间协方差函数的实用计算公式,给出了利用单分量和组合分量解算地球重力场模型的最小二乘配置法基本原理公式.结果表明,最小二乘配置法具有一定的抗差能力,随着观测数据误差的不断增大,其恢复的重力场模型有效阶次不断降低,精度也不断下降;Tzz-Txx-Tyy组合分量解算重力场模型的精度最高,其次为Tzz分量,Txx+Tyy组合分量最差. This work constructs the spherical harmonic analysis models for single component T= and composite components Txx+Tyy, Tzz-Txx-Tyy of disturbed gravity gradients to compute earth's gravitational field model(EGM). Besides, the series expansion formulae of variance and covariance functions of the diagonal components of disturbed gravity gradients are deduced. Then, the practical computational formulae of covariance functions between single component, composite components and the gravity potential coefficients are deduced. Finally, this work presents the fundamental formula of the least squares collocation (LSC) to compute EGM using the single component and composite components. The results show that the LSC is robust to a certain extent and the effective degree and precision of EGM decay gradually with the increase of errors. The precision of the EGM computed by the composite components Tzz-Txx-Tyy is the best, while that of the composite components Txx +Tyy is the least.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2012年第5期1572-1580,共9页 Chinese Journal of Geophysics
基金 国家自然科学基金(41174026 41104047 41174017) 中国科学院研究生院地球科学学院博士后基金(2010046) 信息工程大学博士学位论文创优基金资助
关键词 地球重力场模型 调和分析法 最小二乘配置法 卫星重力梯度 GOCE Earth's gravitational field model(EGM), Spherical harmonic analysis method, Leastsquares collocation(LSC), Satellite gravity gradient(SGG), GOCE
作者简介 刘晓刚,男,1983年生,博士,助理研究员,主要从事卫星重力测量研究.E—mail:liuxiaogang一1949@163.com
  • 相关文献

参考文献18

  • 1Schwarz K P, Krynski J. Improvement of the geoid in local areas by satellite gradiometry. Bulletin Geodesique, 1977, 51: 163-176.
  • 2Tscherning C C. Collocation and least squares methods as a tool for handling gravity field dependent data obtained through space research techniques. Bulletin Gkodesique, 1978, 52:199 212.
  • 3Li J, Sideris M G. Marine gravity and geoid determination byoptimal combination of satellite altimetry and shipborne gravimetry data. Journal of Geodesy, 1997, 71 : 209-216.
  • 4张传定.卫星重力测量--基础、模型化方法与数据处理算法[博士论文].郑州:信息工程大学测绘学院,2000.
  • 5Tseherning C C. Computation of spherical harmonic coefficients and their error estimate using least-squares collocation. Journal of Geodesy, 2001, 75 : 12-18.
  • 6Tscherning C C, Radwan A, Tealeb A A, et al. Local geoid determination combining gravity disturbances and GPS- levelling--a case study in the Lake Nasser area, Aswan, Egypt. Journal of Geodesy, 2001, 75:343 -348.
  • 7Sanso F, Tscherning C C. Fast spherical collocation: theory and examples. Journal of Geodesy, 2003, 77: 101-112.
  • 8张皞,陈琼.卫星重力梯度数据解算位系数的最小二乘配置法[J].测绘与空间地理信息,2005,28(6):34-35. 被引量:2
  • 9汪海洪,罗志才,罗佳,郭利民.多分辨最小二乘配置法初探[J].大地测量与地球动力学,2006,26(1):115-118. 被引量:11
  • 10Kotsakis C. Least-squares collocation with covariance- matching constrains. Journal of Geodesy, 2007, 81: 661- 677.

二级参考文献60

共引文献56

同被引文献119

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部