期刊文献+

上有限δ-直和补模

Cofinitely δ--supplemented modules
在线阅读 下载PDF
导出
摘要 称模M是上有限δ-直和补模,若M的任意上有限子模存在δ-补模是M的直和项.给出上有限δ-直和补模的一些性质,并证明如果M是满足(D3)条件的上有限δ-直和补模,则M的任意上有限直和项是上有限δ-直和补模;同时证明上有限δ-直和补模的任意有限直和是上有限δ-直和补模. A module M was called cofinitely δ--supplemented if for every cofinite submodule of M,exists a δ-supplement,which was a direct summand term of M.Some properties of cofinitely δ--supplemented modules were given and it was proved that if M was a cofinitely δ--supplemented module meetting the conditions(D3),then any cofinite direct summand term of M would be cofinitely δ--supplemented,and meantime,also proved that any finite direct sum of cofinitely δ--supplemented modules would be a cofinitely δ--supplemented module.
出处 《兰州理工大学学报》 CAS 北大核心 2012年第2期128-130,共3页 Journal of Lanzhou University of Technology
关键词 上有限子模 上有限δ-补模 上有限δ-直和补模 cofinite submodule cofinitely δ-supplemented module cofinitely δ--supplemented module
作者简介 王永铎(1974-),男,甘肃靖远人,博士,副教授.
  • 相关文献

参考文献13

  • 1HARMANCI A,KESKIN D,SMITH P F.On-supplemen-ted modules[J].Acta Math Hungar,1999,83:161-169.
  • 2KOSAN M T.Generalized cofinitely semiperfect modules[J].Inter J Algebra,2009,5:58-69.
  • 3AL-TAKHMAN K.Cofinitelyδ-supplemented and cofinitelyδ-semiperfect modules[J].Inter J Algebra,2007,12:601-613.
  • 4WANG Y D,WU D J.A note on cofinitelyδ-lifting(supple-mented)modules[J].Inter J Algebra,2010,4(9):439-446.
  • 5KOSAN M T,HARMANCI A.δ-lifting andδ-supplementedmodules[J].Algebra Colloq,2007,12:53-60.
  • 6WANG Y D.δ-small submodules andδ-supplemented modules[J].Inter J Math Math Sci,2007,58:1-8.
  • 7MOHAMED S H,MULLER B J.Continuous and discretemodules[M].Cambridge:Cambridge Univ Press,1990.
  • 8CALISICI H,PANCAR A.-cofinitely supplemented mod-ules[J].Czech J Math,2004,54:1083-1088.
  • 9WANG Y D,SUN Q.A note on-cofinitely supplementedmodules[J].Inter J Math Math Soc,2007,10:1-5.
  • 10CLARK J,LOMP C,VANAJA N.Lifting modules[M].Ba-ser:Frontiers in math,2006.

二级参考文献12

  • 1CLARK J, LOMP C, VANAJA N, et al. Lifting modules [M]. New York: Springer-Verlag, 2006.
  • 2WISBAUER R. Foundations of moudule and ring theory [M]. Philadelphia: Gordon and Breach, 1991.
  • 3ALIZADE R,BILHAN G,SMITH P F. Modules whose maximal submodules have supplements [J]. Comm Algebra, 2001, 29(6) : 2389-2405.
  • 4ALIZADE R, BUYUKASIK E. Cofinitely weak supplemented modules [J]. Comm Algebra, 2003,31 (11) : 5377-5390.
  • 5AMASYA H C, SAMSUN A P. -cofinitely supplemented modules [J]. Czechoslovak J Math, 2004,54: 1083-1088.
  • 6KOSAN M T. δ-lifting and b-supplemented modules [J]. Algebra Colloq, 2007,14 : 53-60.
  • 7WANG Yongduo. Studies on small submodules and related topics [D]. 南京:南京大学, 2005.
  • 8WANG Yongduo, DING Nanqing. Generalized supplemented modules [J]. Taiwan Residents J Math, 2006,10:1589-1601.
  • 9ZHOU Yiqiang. Generalizations of perfect, semiperfeet and semiregular rings [J]. Algebra Colloq, 2000,3 : 305-318.
  • 10ANDERSON F W, FULLER K R. Rings and categories of moduels [M]. 2nd ed. New York:Springer-Verlag, 1992.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部