摘要
称模M是上有限δ-直和补模,若M的任意上有限子模存在δ-补模是M的直和项.给出上有限δ-直和补模的一些性质,并证明如果M是满足(D3)条件的上有限δ-直和补模,则M的任意上有限直和项是上有限δ-直和补模;同时证明上有限δ-直和补模的任意有限直和是上有限δ-直和补模.
A module M was called cofinitely δ--supplemented if for every cofinite submodule of M,exists a δ-supplement,which was a direct summand term of M.Some properties of cofinitely δ--supplemented modules were given and it was proved that if M was a cofinitely δ--supplemented module meetting the conditions(D3),then any cofinite direct summand term of M would be cofinitely δ--supplemented,and meantime,also proved that any finite direct sum of cofinitely δ--supplemented modules would be a cofinitely δ--supplemented module.
出处
《兰州理工大学学报》
CAS
北大核心
2012年第2期128-130,共3页
Journal of Lanzhou University of Technology
关键词
上有限子模
上有限δ-补模
上有限δ-直和补模
cofinite submodule
cofinitely δ-supplemented module
cofinitely δ--supplemented module
作者简介
王永铎(1974-),男,甘肃靖远人,博士,副教授.