期刊文献+

L-曲线估计正则化参数对高刺激率听觉诱发电位重建的影响 被引量:2

Effects of Regularization Parameters Estimated by L-Curve on Restoration of Auditory-Evoked Potentials Using High Rate Stimulation Paradigm
在线阅读 下载PDF
导出
摘要 探讨在暂态的听觉诱发电位(AEP)重建问题中,当一些L-曲线中出现多个拐点,给正则化参数的确定带来困难时,如何确立最优的正则化参数。本研究提出把高刺激率下AEP去卷积问题转化为一个线性系统逆问题处理,并且引入正则化技术修正目标函数,以解决由于变换矩阵的病态条件带来的无效解;同时采用一个十分典型的正则化参数估计常用方法(L-曲线法)估计正则化参数;针对L-曲线方法存在欠估计的情况,提出在参数选择过程中结合AEP的先验知识,选择L-曲线曲率图中其他曲率极大值点所对应的正则化参数。结果表明,L-曲线方法在大多数情况下,能较好的估计正则化参数,在存在欠估计问题时,则要重新正确选择正则化参数。再重建的暂态AEP与常规AEP的相关系数分别提高了0.14和0.21,相对误差分别下降了0.30和3.25,从而实现暂态AEP信号较好重建。正则化参数控制着目标函数中正则化的程度,对暂态AEP的重建性能影响很大,对于存在复杂曲率结构的L-曲线,根据AEP自身范数的取值范围能够方便地确定出合理的正则化参数,从而改善了AEP重建性能。 This paper discussed how to establish the best regularization parameters when multiple-corners of L-curve existed in many instances revealed in the corresponding curvature plots in the reconstruction of transient AEP.Restoring the transient auditory evoked potentials(AEPs) obtained at high rate stimulation requires a deconvolution process in the recently developed paradigm.We demonstrated it could be transferred into an inverse problem for a linear system,which requires regularization techniques to deal with the ill-conditioning issue raised from the underlying properties of the transform matrix.A well-established L-curve method was introduced,in which the difficult of obtaining optimal parameter was investigated.For the underestimated case,another new regularization parameter was chosen which was corresponding with other curvature maximum point,incorporating the knowledge of the actual AEP magnitude.This study demonstrated that in most cases,we got fine results by L-curve,however there were failed cases.By comparing the restored AEPs and the conventional AEPs in normal and deviant groups,we achieved the increase by 0.14 and 0.21 respectively in terms of correlation coefficients,and the reduction by 0.30 and 3.25 respectively in terms of relative errors.The regularization parameter that controls the regularizing degree of the objective function plays an important role in the AEP restoration performance.Experimental results showed that appropriate regularization parameter could be determined by incorporating the knowledge of the actual AEP magnitude.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2012年第2期237-246,共10页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(61172033) 广东省高等学校人才引进项目(2009)
关键词 L-曲线 TIKHONOV正则化方法 听觉诱发反应 病态逆问题 L-curve Tikhonov regularization auditory evoked potential(AEP) ill-posed inverse problems
作者简介 通信作者:王涛。E-mail:taowang@fimmu.com
  • 相关文献

参考文献1

二级参考文献16

  • 1AVINASH K C, MALCOLM S. Principles of computerized tomographic imaging [M]. New York: IEEE, 1999.
  • 2PAN S X, AVINASH K C. A computational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered backpropagation [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983,31(5): 1262-1275.
  • 3RICHMOND J H. Scattering by a dielectric cylinder of arbitrary cross section shape [J]. IEEE Transactions on Antennas Propagation, 1965,13(3) : 334-341.
  • 4HARRINGTON F R. Field computation by moment methods [M]. New York: Macmillan, 1968.
  • 5JOHNSON S A, MICHAEL L T. Inverse scattering solutions by a sinc basis, multiple source, moment method-Part I: Theory [J]. Ultrasonic Imaging, 1983,5(4): 361-375.
  • 6MICHAEL L T, JOHNSON S A. Inverse scattering solutions by a sinc basis, multiple source, moment method-Part II: Numerical evaluations [J]. Ultrasonic Imaging, 1983, 5(4): 376-392.
  • 7CHEW W C, WANG Y M. Reconstruction of two- dimensional permittivity distribution using the distorted born iterative method [J]. IEEE Transactions on Medical Imaging, 1990,9(2): 218-225.
  • 8FRANCHOIS A, PICHOT C. Generalized cross validation applied to a Newton-type algorithm for microwave tomography [J]. Inverse Problems in Scattering and Imaging, 1992, SPIE 1767: 232-240.
  • 9FRANCHOIS A, PICHOT C. Microwave imaging-Complex permittivity reconstruction with a Levenberg-Marquardt method [J]. IEEE Transactions on Antennas and Propagation, 1997,45(2): 203-215.
  • 10JOACHIMOWICZ N, PICHOT C, HUGONIN J P. Inverse scattering: An iterative numerical method for electromagnetic imaging [J]. IEEE Transactions on Antennas and Propagation, 1991,39(12): 1742-1752.

共引文献7

同被引文献28

  • 1刘健,王建新,王森.一种改进的接地网故障诊断算法及测试方案评价[J].中国电机工程学报,2005,25(3):71-77. 被引量:97
  • 2Regan D. Comparison of transient and steady-state methods [J]. Ann NY Acad Sci, 1982, 388:45 -71.
  • 3Galambos R, Makeig S, et al. A 40 - Hz auditory potential recorded from the human scalp [J]. Psychology, 1981, 78(4) : 2643 - 2647.
  • 4Delgado RE, 0zdamar O. Deconvolution of auditory evoked potentials obtained at high stimulus rates. [ J ]. The Journal of the Acoustical Society of America, 2004, 115 : 1242 - 1251.
  • 5Ozdamar O, Boherquez J. Signal to noise ratio and frequency analysis of continuous loop averaging deconvolution (CLAD) of overlapping evoked potentials [J]. The Journal of the Acoustical Society of America, 2006, 119:429 - 438.
  • 6Ozdamar O, Delgado RE, Yavuz E, et al. Deconvolution of auditory evoked potentials obtained at high stimulus rates[ C ] // First International IEEE EMBS Conference on Neural Engineering. Capri: IEEE, 2003:285-288.
  • 7Mcneer RR, Boherquez J, Ozdamar O. Influence of auditory of auditory stimulation rates on evoked potentials during general anesthesia: relation between the transient auditory auditory middle-latency response and the 40 - Hz auditory steady state response [J]. Anesthesiology, 2009, 110(5): 1024-1035.
  • 8Gutschalk A, Mase R, Roth R, et al. Deeonvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex [ J ]. Clinical Neurophysiology, 1999, 110 (5) : 856 -868.
  • 9Wang Tao, Zhan Changan, Yan Gang, et al. A preliminary investigation of the deconvolution of auditory evoked potentials using a session jittering paradigm [ J ]. Journal of Neural Engineering, 2013, 10(2): 026023.
  • 10Tikhonov AN, Arsenin VY. Solutions of Ill-Posed Problems [M]. New York: Wiley, 1977.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部