期刊文献+

呼伦贝尔草原生物量估算的光谱模型 被引量:4

The spectral model for estimating above - ground net primary productivity on Hulunbeier grassland,Inner Mongolia,China
原文传递
导出
摘要 采用美国ASD公司Fieldspec3光谱仪,在内蒙古呼伦贝尔草原区进行了高光谱遥感地面观测与地上干物质量测定,并获取与试验同期的Terra/MODIS遥感数据。运用回归分析方法,构建实测归一化植被指数(ASD NDVI)与地上干物质量(ANPP)之间的地面光谱模型,分析ASD NDVI与Modis NDVI相关关系,建立基于Modis NDVI预测地上干物质量的Modis光谱模型。研究表明:呼伦贝尔草原的区域最优地面光谱模型为指数函数(n=49,R2=0.7496,P<0.001),ASD NDVI与Modis NDVI为线性相关关系(n=49,R2=0.7939,P<0.001),所建立Modis光谱模型的标准误差SE=62g/m2,平均预测精度为68.86%,该模型为呼伦贝尔草原区区域产草量测定提供了新方法。 During July and August 2009, an ASD Fieldspec3 spectroradiometer was used to measure hyperspectral data; Harvested above -ground net primary productivities(ANPP) were measured, and Terra/MODIS remotely - sensed data corresponded with the field surveys on the Hulunbeier grassland, Inner Mongolia, China were ob- tained. By regression analysis method, the ground spectral models were built for estimating ANPP with Normal- ized Difference Vegetation Index measured in the field (ASD NDVI). Then the relationship between NDVI got from MODIS/TERRA (MODIS NDVI) and ASD NDVI was analyzed to establish a MODIS Spectral Model to es- timate ANPP with MODIS NDVI. The results showed that the best ground Spectral Model was a exponential equa- tion in study area( n = 49, R2 = 0. 7496, P 〈 0. 001 ). The relationship between MODIS NDVI and ASD NDVI was linear equation(n = 49, R2 = 0. 7939, P 〈 0. 001 ). MODIS Spectral Model established with two equations had standard error SE = 62g/m2 and 68.86% average prediction accuracy. The study provided a new method to pre- dict grassland biomass on the Hulunbeier grassland.
出处 《干旱区资源与环境》 CSSCI CSCD 北大核心 2012年第5期108-112,共5页 Journal of Arid Land Resources and Environment
基金 环保公益性行业科研专项经费(200809125 200909021) 中国环境科学研究院中央级公益性科研院所基本科研业务专项项目(2009KYYW07)资助
关键词 呼伦贝尔草原 归一化植被指数(NDVI) 地上干物质量(ANPP) 光谱模型 Hulunbeier grassland Spectral Models ANPP MODIS NDVI ASD NDVI
作者简介 陈艳梅(1970-),女,河北邢台人。Email:ehenyml970@sohu.com
  • 相关文献

参考文献18

  • 1Tucher C J.Red and photographic infrared linear combinations for monitoring vegetation[J].Remote Sensing of Environment,1979,8(2):127-150.
  • 2Everitt J H,Husse M A,ESCOBAR D E,et al.Assessment of grassland phytomass with airborne video imagery[J].Remote Sensing of Environ-ment,1986,20(3):299-306.
  • 3Beerio O,Phillps R,Hendrickson J,et al.Estimating forage quantity and quality using aerial hyperspectral imagery fornorthern mixed-grassprairie[J].Remote Sensing of Environment,2007,110(2):216-225.
  • 4Cho M A,Skidmore A,Corsi F,et al.Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and par-tial least squares regression[J].International Journal of Applied Earth Observation and Geoinformation,2007,9(4):414-424.
  • 5Numata I,RobertsD A,Chadwick O A,et al.Evaluation of hyperspectral data for pasture estimate in the Brazilian Amazon using field and ima-ging spectrometers[J].Remote Sensing of Environment,2008,112(4):1569-1583.
  • 6Favaf,Colombo R,Bocchi S,et al.Identification of hyperspectral vegetation indices for mediterranean pasture characterization[J].InternationalJournal of Applied Earth Observation and Geoinformation,2009,11(4):233-243.
  • 7金丽芳 徐希孺 张猛.内蒙古典型草原地带牧草产量估算的光谱模型.内蒙古大学学报:自然科学版,1986,17(4):735-740.
  • 8王正兴,刘闯,赵冰茹.AVHRR草地分类的潜力和局限:以锡林郭勒草原为例[J].自然资源学报,2003,18(6):704-711. 被引量:27
  • 9王艳荣,雍伟义.荒漠草原近地面反射特征研究──戈壁针茅(Stipa gobica)荒漠草原近地面反射光谱特征与产草量的相关分析[J].内蒙古大学学报(自然科学版),1996,27(5):664-669. 被引量:6
  • 10黄敬峰,王秀珍.天山北坡中东段天然草地光谱植被指数特征[J].山地学报,1999,17(2):119-124. 被引量:15

二级参考文献44

共引文献184

同被引文献101

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部