期刊文献+

光电平台惯性稳定系统的自适应动态摩擦补偿 被引量:10

Adaptive Dynamic Friction Compensation for an Electro-Optical Platform Inertial Stabilization System
在线阅读 下载PDF
导出
摘要 机载光电平台能够实时获取侦察测量信息,通过设计惯性稳定系统隔离载体运动以减小光学传感器视轴的抖动。对于采用整体稳定方式的光电平台,环架轴系间的摩擦是影响视轴稳定精度的主要扰动因素。考虑摩擦力矩由LuGre动态摩擦模型描述,针对动态摩擦参数和系统负载特性未知的情况,为惯性稳定回路设计了一种模型参考自适应摩擦补偿控制器。通过类李雅普诺夫分析证明了闭环系统跟踪误差的渐近收敛性。仿真结果显示,相比采用传统的比例积分惯性稳定控制器,光电平台系统的稳定精度得到显著提升。 An airborne electro-optical (E-O) platform is used to obtain real-time surveillance and measurement information, and an inertial stabilization system is designed to isolate the carrier motion so as to reduce the line-of-sight ( LOS ) jitter stabilization, the shaft friction torque of of the optical sensors. In an gimbals is the main disturbance LOS. Suppose that the friction torque is described parameters and unknown load characteristic, a model E-O platform system using mass against stabilization accuracy of the by the LuGre model, with unknown dynamic friction reference adaptive friction compensation is designed for the inertial stabilization loop. And asymptotic convergence of the proved through Lyapunov-like analysis. The simulation results tracking error of closed loop system is reveal a noteworthy improvement in stabilization accuracy of the LOS as compared with a conventional proportional integral controller.
出处 《电光与控制》 北大核心 2012年第4期50-54,共5页 Electronics Optics & Control
基金 国家自然科学基金(60874084)
关键词 光电平台 视轴稳定 摩擦补偿 模型参考自适应控制 electro-optical platform line-of-sight stabilization friction compensation model reference adaptive control
作者简介 鲍文亮(1980-),男,江苏溧阳人,博士生,研究方向为惯性稳定平台的伺服控制理论与应用。
  • 相关文献

参考文献10

  • 1HILKERT J M. Inertially stabilized platform technology:Concepts and principles[J].IEEE Control Systems Magazine,2008,(01):26-46.
  • 2MASTEN M K. Inertially stabilized platforms for optical imaging systems:Tracking dynamic targets with mobile sensors[J].IEEE Control Systems Magazine,2008,(01):47-64.
  • 3HILKERT J M,HULLENDER D A. Adaptive control systems techniques applied to inertial stabilization systems[J].SPIE Acquisition Tracking and Pointing IV,1990.190-206.
  • 4KENNEDY P J,KENNEDY R L,POLLOCK D H. Adaptive compensation for pointing and tracking systems applications[A].Waikoloa,Hawaii,USA,1999.279-284.
  • 5LI B,HULLENDER D,DIRENZO M. Nonlinear induced disturbance rejection in inertial stabilization systems[J].IEEE Transactions on Control Systems Technology,1998,(03):421-427.
  • 6CANUDAS-DE-WIT C,OLSSON H,ASTROM K J. A new model for control of systems with friction[J].IEEE Transactions on Automatic Control,1995,(03):419-425.
  • 7CANUDAS-DE-WIT C,LISCHINSKY P. Adaptive friction compensation with partially known dynamic friction model[J].International Journal of Adaptive Control and Signal Processing,1997.65-80.
  • 8FREIDOVICH L,ROBERTSSON A,SHIRIAEV A. LuGre-Model-Based friction compensation[J].IEEE Transactions on Control Systems Technology,2010,(01):194-200.
  • 9LU L,YAO B,WANG Q. Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model[J].Automatica,2009,(12):2890-2896.
  • 10TAN Y,KANELLAKOPOULOS I. Adaptive nonlinear friction compensation with parametric uncertainties[A].Los Angeles,California,USA,1999.2511-2515.

同被引文献97

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部