期刊文献+

自抗扰控制器参数整定的一种新方法 被引量:3

A new method of parameter tuning for active disturbances rejection controller
在线阅读 下载PDF
导出
摘要 针对目前自抗扰控制器多参数整定方法存在的不足,根据分离原则,提出对自抗扰控制器中的跟踪微分器根据需要的过渡过程进行参数整定,扩张状态观测器用改进的非支配排序遗传算法进行整定,最后用非线性最小二乘法对非线性反馈进行整定。仿真实例表明,通过该整定方法得到控制器的控制效果具有快速性、稳定性的特点,而且该方法也优于用遗传算法对自抗扰控制器参数的整定。 Based on the shortcomings of the existing parameter tuning for active disturbances rejection controller,this paper proposes,according to the separation principle,to tune the parameter of tracking differentiator through the needed transient process,extension state observer by non-dominated sorting genetic algorithm and nonlinear feedback by nonlinear least-squares.Simulation experiment shows that this method,better than genetic algorithm,is fast and stable in parameter tuning for active disturbances rejection controller.
出处 《黑龙江电力》 CAS 2012年第1期71-73,共3页 Heilongjiang Electric Power
关键词 参数整定 非支配排序遗传算法 非线性最小二乘法 parameter tuning non-dominated sorting genetic algorithm nonlinear least-squares
作者简介 王东振(1982-),男,华能沁北电厂工程师,主要从事电厂运行管理方面的工作。
  • 相关文献

参考文献3

二级参考文献21

  • 1韩京清.一种新型控制器──NLPID[J].控制与决策,1994,9(6):401-407. 被引量:55
  • 2张晓东,童少为.用MATLAB仿真分析自抗扰控制器的整定参数[J].微计算机信息,2006,22(11S):90-92. 被引量:19
  • 3Horn J,Nafpliotis N,Goldberg D E.A niched pareto genetic algorithm for multiobjeetive optimization[C]//Proeeedings of the 1st IEEE Conference on Evolutionary Computation,IEEE World Congress on Computational Intelligence,Piscataway,New Jersey:IEEE Service Center, 1994,1:82-87.
  • 4Erickson M,Mayer A,Horn J.The niched pareto genetic algorithm 2 applied to the design of groundwater remediation systems[C]//EMO, 2001 : 681-695.
  • 5Srinivas N,Deb K.Multi-objective optimization using non-dominated sorting in genetic algorithms [J].Evolutionary Computation, 1994,2 (3) :221-248.
  • 6Kalyanmoy D,Agrawal S,Pratab A,et al.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II.KanGAL Report 200001[R].Indian Institute of Technology, Kanpur, India, 2000.
  • 7Zitzler E,Thiele L.Multi-objective evolutionary algorithms :A comparative case study and the strength pareto approach[J].IEEE Transactions on Evolutionary Computation, 1999,3 (4) : 257-271.
  • 8Zitzler E,Laumanns. M,Thiele L.SPEA2:Improving the strength Pareto evolutionary algorithm.TIK-Report 103[R].2001.
  • 9Come D W,Knowles J D,Oates M J.The Pareto envelope-based selection algorithm for multiobjective optimization[C]//Schoenauer M,Deb K,Rudolph G,et al.Proceedings of the Parallel Problem Solving from Nature VI Conference.Springer,2000:839-848.
  • 10Come D W,Jerram N R,Knowles J D,et al.PESA-II:Region-based selection in evolutionary muhiobjective optimization[C]//Proceedings of the Genetic and Evolutionary Computation Conference(GECCO- 2001 ).Morgan Kaufmann Publishers, 2001:253-290.

共引文献139

同被引文献46

  • 1黄焕袍,武利强,韩京清,高峰,林永君.火电单元机组协调系统的自抗扰控制方案研究[J].中国电机工程学报,2004,24(10):168-173. 被引量:51
  • 2任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报,2006,18(1):41-43. 被引量:169
  • 3冯俊婷,黄晓津,张良驹.核反应堆功率调节系统控制特性研究[J].原子能科学技术,2006,40(3):306-310. 被引量:9
  • 4韩京清.自抗扰控制技术[M].北京:国防工业出版社.2008.
  • 5韩京清.自抗扰控制技术[M].北京:国防工业出版社,2009:255-262,280-286.
  • 6王茂励.超空泡航行体的数学建模与控制方法研究[D].哈尔滨:哈尔滨工程大学,2008.
  • 7Astrom K J, Hagglund T. The future of PID control. ControlEngineering Practice,2001,9(11):1163—1175.
  • 8杨献勇.热工过程自动控制[M].北京:清华大学出版社,2001.
  • 9Liu T, Gu D, Zhang W. A // design method of PID controller forsecond-order process with integrator and time delay[C].Proceedings of42nd IEEE Conference on Decision and Control, 2003:6044—6049.
  • 10Seyab R K A, Cao Y, Yang S H. Predictive control for the ALSTOMgasifier problem[J] . Control Theory and Applications, IEEProceedings,2006,153(3):293-301.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部