期刊文献+

二维相关光谱结合偏最小二乘法测定牛奶中的掺杂尿素 被引量:28

Detection of urea in milk using two-dimensional correlation spectroscopy and partial least square method
在线阅读 下载PDF
导出
摘要 为了检验牛奶中是否掺杂尿素并将其量化测定,配置含有尿素质量浓度范围为1~20g/L之间40个牛奶样品,以掺杂物尿素浓度为外扰,分别研究了掺杂尿素牛奶的二维相关(近红外-近红外,中红外-中红外,近红外-中红外)光谱特性,在此基础上,分别选择随浓度变化大的4200~4800cm-1和1400~1704cm-1为建模区间,采用偏最小二乘方法建立定量分析模型。研究结果表明:4200~4800cm-1建模分析效果优于1400~1704cm-1建模结果,其交叉验证均方根误差为0.266g/L,对未知样品集预测相关系数达到0.999,预测均方根误差为0.219g/L,这表明所建模型具有较好的预测效果。该方法无需样品处理,成本低,为快速判别牛奶是否掺杂提供了一种新的可能的方法。 For the detection and quantification of urea in milk, pure milk samples and 40 adulterated milk samples added different contents of urea were prepared. Then 2D correlation (NIR-NIR, IR-IR, NIR-IR) spectroscopy under the perturbation of adulteration concentration was calculated and the spectra in the range of 4 200-4 800 cm^-1 and 1 400-1 704 cm^-1 were selected to construct the partial least square (PLS) calibration model, respectively. The PLS calibration model showed 4 200-4 800 cm^-1 was the better range for calibration performance and the root mean square errors of cross validation (RMSECV) of the model was 0.266 g/L. When using this model for predicting the urea contents in prediction set, the root mean square errors of prediction (RMSEP) was 0.219 g/L and the coefficient correlation of actual values and predicted values was 0.999, which means the model has good prediction ability. The method can be used for a correct discrimination on whether the milk is adulterated and provides a new and cost-effective alternative to test the adulteration of milk.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2012年第6期259-263,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家自然科学基金(60938002 30900275) 高等学校博士学科点专项科研基金(20090032120064)
关键词 红外光谱 尿素 模型 偏最小二乘法 掺杂牛奶 infrared spectroscopy, urea, models, partial least square, adulerated milk
作者简介 杨仁杰(1978-),男,山西运城人,在职博士,天津农学院机电工程系讲师,研究方向为食品安全检测。天津天津大学精密测试技术及仪器国家重点实验室,300072。Email:rjyang1978@163.com 刘蓉(1978-),女,副教授,研究方向为组织光学与光谱应用。天津天津大学精密测试技术及仪器国家重点实验室,300072。Email:rongliu@tju.edu.cn
  • 相关文献

参考文献20

  • 1Noda, I. Advances in two-dimensional correlation spectroscopy[J]. Vibrational Spectroscopy, 2004, 36(2): 143-165.
  • 2Liu Hongxia, Sun Suqin, Lti Guanghua, et al. Study on angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation 1R spectroscopy[J]. Spectrochimica Acta Part A, 2006, 64(2): 321 -326.
  • 3Czamik-Matusewicz B, Murayama K, Tsenkova R, et al. Analysis of near-infrared spectra of complicated biological fluids by two-dimensional correlation spectroscopy: protein and fat concentration-dependent spectral changes of milk[J]. Applied Spectroscopy, 1999, 53(12): 1582- 1594.
  • 4Sasic S, Ozaki Y. Wavelength-wavelength and sample-sample two-dimensional correlation analyses of short-wave near-infrared spectra of raw milk[J]. Applied Spectroscopy, 2001, 55(2): 163- 172.
  • 5唐玉莲.近红外光谱在乳制品成分快速检测方面的应用研究[J].乳业科学与技术,2009,32(4):190-194. 被引量:12
  • 6He Bin, Liu Rong, Yang Renjie, et al. Adulteration detection in milk using infrared spectroscopy combined with two-dimensional correlation analysis[C]// Proceedings of SPIE, 2010, 7572: 75720P1-7.
  • 7屠振华,朱大洲,籍保平,陈红茜,庆兆珅.基于近红外光谱技术的蜂蜜掺假识别[J].农业工程学报,2011,27(11):382-387. 被引量:39
  • 8Lu Chenghui, Xing Bingren, Hao Gang, et al. Rapid detection of melamine in milk powder by near infrared spectroscopy[J]. J. Near infrared Spectroscopy, 2009, 17(2): 59-67.
  • 9李水芳,单杨,朱向荣,李忠海.近红外光谱结合化学计量学方法检测蜂蜜产地[J].农业工程学报,2011,27(8):350-354. 被引量:24
  • 10Mauer L J, Chemyshova A A., Hiatt A, et al. Melamine detection in infant formula powder using near- and mid-infrared spectroscopy[J]. J. Agric. Food Chem, 2009, 57(10): 3974-3980.

二级参考文献48

共引文献108

同被引文献386

引证文献28

二级引证文献263

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部