期刊文献+

基于模糊同组划分的多尺度彩色图像增强算法 被引量:10

Multi-scale color image enhancement algorithm based on fuzzy peer groups
在线阅读 下载PDF
导出
摘要 现有多尺度Retinex彩色图像增强算法采用固定权值进行加权来融合各个单尺度Retinex算法的增强结果,无法充分体现各个单尺度算法在细节增强和颜色保持上的优势,且噪声信号往往随着图像的增强而放大。针对这些问题,提出一种基于模糊同组划分的多尺度Retinex彩色图像增强算法。算法首先采用模糊同组技术将像素点划分为噪声点、细节点和平滑区域点3类,并对噪声点采用矢量中值滤波进行去除。然后采用不同尺度的Retinex算法增强图像,并通过细节区域和平滑区域所占局部窗口的面积比例来融合各个单尺度增强结果。最后通过颜色恢复和动态截取拉伸操作,进一步减少图像颜色失真,扩大动态范围。实验表明,所提出的方法相比其他算法具有更好的彩色图像增强效果,具有实际应用价值。 The advantages of different single scale Retinex algorithms in detail enhancement and chromaticity preservation can not be utilized sufficiently by existing multi-scale Retinex algorithm due to using fixed weighted value.Moreover,the noisy pixels are often enhanced in the enhancement process.Aiming at these disadvantages,we propose an improved algorithm based on fuzzy peer group.First,the pixels are classified into noisy ones,detail ones and smooth ones using fuzzy peer group technique and the noisy pixels are suppressed with the vector median filter.Then the image is enhanced with different scale Retinex algorithms and the results are fused according to the proportions occupied by different pixels in local window.Finally,further operations of color restoration,dynamic truncation and stretch are carried out to solve the problems of color distortion and narrow dynamic range.Experiment results show that the proposed algorithm outperforms other methods,and can be applied in engineering application and has practical application values.
作者 耿鑫 胡晓光
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第3期602-608,共7页 Chinese Journal of Scientific Instrument
关键词 图像增强 多尺度RETINEX 模糊同组技术 噪声去除 image enhancement multi-scale Retinex fuzzy peer group noise reduction
作者简介 耿鑫,2007年于北京航空航天大学获得学士学位,现为北京航空航天大学博士研究生,主要研究方向为图像处理。E—mail:gengxin213@hotmail.com胡晓光,2003于哈尔滨工业大学获得博士学位,现为北京航空航天大学教授、博士生导师,主要研究方向为自动化仪器仪表。E-mail:xiaoguang@buaa.edu.cn
  • 相关文献

参考文献16

二级参考文献91

共引文献142

同被引文献99

  • 1于天河,郝富春,康为民,戴景民.红外图像增强技术综述[J].红外与激光工程,2007,36(z2):335-338. 被引量:59
  • 2张光玉,解梅,马争.一种新的彩色图像边缘检测算法[J].电子科技大学学报,2005,34(2):164-167. 被引量:10
  • 3GONZALEZ R C, WOODS R E. Digital image process- ing[M]. Boston: Addision-Wesley: 2002.
  • 4BROWNRIGG D. The weighted median filter[J]. Com- munications of the ACM, 1984, 27(8): 807-818.
  • 5HWANG H, HADDAD R A. Adaptive median filters: new algorithms and results[J]. IEEE Transactions on Image Processing, 1995, 4(4): 499-502.
  • 6NAIR M S, REJI J. An efficient directional weighted me- dian switching filter for impulse noise removal in medical images[C]. Advances in Computing and Communications, Kochi, India, 2011: 276-288.
  • 7ADHINARAYANAN V, SHEEBHA S P, SRIRAMAN L, et al. A modified algorithm for removal of salt and pepper noise in color images[C]. Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, 2012: 356-361.
  • 8BENNETT E P, MCMILLAN L. Video enhancement using per-pixel virtual exposures[J]. ACM Transactions on Graphics,2005,24(3) :845-852.
  • 9YU C Y, OUYANG Y C, WANG C M, et al. Adaptive inverse hyperbolic tangent algorithm for dynamic contrast adjustment in displaying scenes[J] EURASIP Journal on Advances in Signal Processing, 2010,2010(18) :812-831.
  • 10DONG X, WANG G, PANG Y, et al. Fast efficient algorithm for enhancement of low lighting video[C]. IEEE International Conference on Multimedia and Expo, 2011 : 1-6.

引证文献10

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部