摘要
在利用视觉信息跟踪、识别挖掘机器人铲斗目标时,实时采集的铲斗图像存在旋转、平移、缩放等情况.为提高对铲斗目标的识别能力,提出了基于不变矩和神经网络相结合的铲斗目标识别方法.提取铲斗图像对于平移、旋转、缩放具有不变性能的7个不变矩特征向量,归一化后作为改进BP神经网络的训练样本及测试样本.应用训练后的神经网络对铲斗目标进行识别,仿真表明该方法具有较好的识别能力.
When tracking and identifying the bucket target of excavator robot by using visual information,there exist rotation,translation and zoom situations for the bucket images collected in real time.To improve the identifying ability of the bucket target,a recognition method of bucket target was proposed based on invariant moments and BP neural network.The method extacted seven moment characteristic quantities of bucket image with invariant performance against translation,rotation and zoom.They can act as the training and testing samples for improved BP neural network after being normalized.Using the trained neural network to identify bucket target,the simulation result shows that this method has high recognition ability.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012年第3期426-430,共5页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(50775029)
中央高校基本科研业务费专项资金资助项目(N090603008)
关键词
挖掘机器人
不变矩
神经网络
图像
识别
excavator robot
invariant moments
neural network
image
recognition
作者简介
王福斌(1968-),男,山东定陶人,东北大学博士研究生;
刘杰(1944-),男,辽宁昌图人,东北大学教授,博士生导师.