摘要
                
                    面向输电系统检测及维护作业的自动化,提出并设计了一种可以在电力铁塔表面自由移动的五自由度双臂关节式攀爬机器人,以期代替人工完成危险的高空攀爬检测作业任务。该电力铁塔攀爬机器人机构紧凑,左右机构对称,创新采用直线推杆机构实现两臂张合功能,此机构可良好支撑机器人双臂,相比传统关节设计采用的大转矩电机直驱方式,大幅度降低了对驱动电机的转矩要求。建立了机构CAD模型。进行了静力学分析,并在动力学仿真软件Adams软件环境下进行仿真。通过和电机直驱关节方法比较,分析和仿真结果均表明采用直线推杆机构可减小驱动电机转矩。样机试验结果表明电力铁塔攀爬机器人系统的设计组成原理合理,系统方案成功可靠。
                
                For the automation of power transmission inspection and maintenance ,a dual-arm articu- lated robot which can climb electricity pylons flexibly is proposed to perform dangerous aerial climbing de- tection work.The symmetrical and compact mechanism structure of the robot is developed with 2 grippers and 5-DOF,which audaciously adopts the linear rod units ,which may support the dual arms well,to realize griping and loosing motion, thus the torque requirement for driving motor is substantially lessened compar- ing to the traditional joints design which is drived by motor with large torque directly.Then a CAD model of the linear rod units is proposed.And statics analysis and simulation using Adams software are put forword. Comparing to the traditional method drived by motor directly,the analysis and simulation results confirm that the design can reduce the torque of the motor.Prototype Experiments demonstrate that the design prin- ciple of the electricity pylons climbing robot is reasonable ,and that the system are stable.
    
    
    
    
                出处
                
                    《机械设计与制造》
                        
                                北大核心
                        
                    
                        2012年第3期52-54,共3页
                    
                
                    Machinery Design & Manufacture
     
            
                基金
                    四川省科技厅资助项目(2008GZ0156)
            
    
                关键词
                    双臂机器人
                    铁塔攀爬
                    机构设计
                
                        Dual-arm robot
                         Pylons climbing
                         Mechanism desien