期刊文献+

经过改进的求解TSP问题的蚁群算法 被引量:14

An Improved Ant Colony Algorithm for Solving TSP Problems
原文传递
导出
摘要 介绍了一种求解TSP问题的算法—改进的蚁群算法,算法通过模拟蚁群搜索食物的过程,可用于求解TSP问题,算法的主要特点是:正反馈、分布式计算、与某种启发式算法相结合.通过对传统蚁群算法的改进可以得到较好的结果.计算机仿真结果表明了该算法的有效性. This paper introduces an algorithm for solving TSP problems - an improved ant colony algorithm. By simulating the process of searching for food by ant, the algorithm can be used to solve the TSP. The main features of the algorithm are: positive feedback, dis- tributed computation, and combined with a heuristic algorithm. Through the improvement of traditional ant colony algorithm ,we can get better results.Computer simulation results shows the effectiveness of the algorithm.
机构地区 中北大学理学院
出处 《数学的实践与认识》 CSCD 北大核心 2012年第4期133-140,共8页 Mathematics in Practice and Theory
基金 2009年国家自然科学研究基金(60876077) 2009年山西省自然科学研究基金(2009011018-3)
关键词 TSP 蚁群算法 TSP Ant colony algorithm
  • 相关文献

参考文献12

  • 1Colorni A, Dorigo M, ManiezzoV, et al. Distributed optimization by ant colonies[C]//Proceedings of the 1st European Conference on Artificial Life, 1991,134-142.
  • 2Gambardella L M, Dorigo M. Ant-Q: a reinforcement learning approach to the traveling salesman problem[C]//Proceedings of the 12th International Conference on Machine Learning, 1995, 252-260.
  • 3DorigoM, Gambardella L M. A study of some properties of Ant-Q[C]//Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, 1996,656-665.
  • 4Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[C]//Proceedings of the IEEE International Conference on Evdlutionary Computation, 1996,622-627.
  • 5DorigoM, Luca M. The Ant-Q.. algorithm applied to the nuclear reload problem[J]. Annals of Nuclear Energy, 2002,29(12): 1455-1470.
  • 6http: / /www.iwr.uni-heidelberg.de /groups / comopt /software/ TS P LIB95 / .
  • 7Frederico C V, Adiao D D N & Jose A F. An efficient approach to the traveling salesman problem using self-organizing maps[J]. International Journal of Neural Systems, 2003, 13(2): 59-66.
  • 8Taylor J G. Neural computation: The historical background[M], in E. Fiesler and R. Beale, eds., Handbook of Neural Computation. New York: Oxford University Press, 1997.
  • 9Hebb D O. The Organization of Behavior: A Neuropsychological Theory[M]. New York: Wiley, 1949.
  • 10Ramdn y Cajal S. Histologie du Systems Nerveux de Fhomme et des vertebras[M]. Paris." Maloine, 1911.

同被引文献112

引证文献14

二级引证文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部