期刊文献+

石墨烯带长度变化与电子结构和电子输运的关系 被引量:1

Electronic Structure and Transmission of Graphene Ribbons with Changed Length
在线阅读 下载PDF
导出
摘要 利用基于非平衡格林函数的密度泛函方法,对长度变化石墨烯带的电子结构和输运特性进行了研究,得出在同一长度的石墨烯带内,系统态密度的峰值与电子传输概率的峰值具有较好的对应关系,但是电子传输概率的大小与电子态密度值的大小没有明显的正比关系。随着长度的增加,电子的传输更倾向于集中在某几个能量态,传输曲线呈现梳齿状,这是由于石墨烯带越长,电子态呈现越稳定的分布。研究还得出不同长度的石墨烯带的电导值和HOM O-LUM O差值成反比,且随着石墨烯带长度增大,其电导出现非线性变化,且呈现规则的振荡状态。 Density functional theory based on nonequilibrium Greenrs function is employed to calculate and simulate the electronic structure and the transmission of graphene ribbons with different lengths. Results show that the peak values of density of state (DOS) correspond to the peaks of the electronic transmission probability in the same graphene ribbon, but the amplitude of the transmission probability has no a direct proportion to the value of DOS. With the graphene ribbon becomes longer, the electronic transmission tends to be concentrated on a few of states and the transmissions present the jagged forms, which are induced by the more stable distributions of the electronic states as the graphene ribbon becomes longer. The research discovers that the conductance of different length graphene ribbons presents inverse proportion to the gap between HO- MO and LUMO. The result also shows that the conductance of the graphene ribbon appears nonlinear and regular oseillation as the length of the graphene ribbon increases.
出处 《固体电子学研究与进展》 CAS CSCD 北大核心 2012年第1期1-5,35,共6页 Research & Progress of SSE
基金 国家重点基础研究发展规划项目(2008CB716204) 教育部国际合作研究项目(20060360563) 江苏省自然科学基金项目(BK2008097) 中央高校基础科研专项资金资助项目(JUSRP31005)
关键词 石墨烯带 密度泛函 电子传输 态密度 graphene ribbon density functional electron transmission density of state
作者简介 陈蕾(CHENLei)女,1979年生,江南大学理学院讲师,博士研究生,研究方向为计算物理和纳米光电材料的研究工作。 联系作者:E—mail:wangliguang@jiangnan.edu.cn王利光(WANGLiguang)男,江南大学理学院教授,博士生导师,主要从事纳米电子学与纳米光电材料的研究工作。
  • 相关文献

参考文献24

  • 1Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
  • 2Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
  • 3Kroto H W,Heath J R,O’Brien S C,et al.C60:Buckminster fullerene[J].Nature,1985,318(6042):162-163.
  • 4Eldon G,Emberly,Kirczenow G.Electron standing-wave formation in atomic wires[J].Phys Rev B,1999,60(8):6028-6033.
  • 5Service R F.Assembling nanocircuits from thebottom up[J].Science,2001,293(5531):782-785.
  • 6Derycke V,Martel R,Appenzeller J.et al.Carbonnanotube inter-and intramolecular logic gates[J].Nano Lett,2001,1(9):453-456.
  • 7Wind S J,Appenzeller J,Martel R,et al.Verticalscaling of carbon nanotube field-effect transistorsusing top gate electrodes[J].Appl Phys Lett,2002,80(20):3817-3820.
  • 8Normile D.The end-not here yet,but coming soon[J].Science,2001,293(5531):787-788.
  • 9Wang L G,Tagami K,Tsukada M.Quantum transportthrough multiterminal phenalenyl molecular bridges[J].Jpn Apply Physics,2004,43(35):2779-2785.
  • 10Kane C L.Erasing electron mass[J].Nature,2005,438(7065):168-170.

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部