期刊文献+

改进的前向信息修补算法及其应用

An Improved Forwards Information Repairing Algorithm for Target Identification and its Applications
在线阅读 下载PDF
导出
摘要 前向信息修补算法可以对离散动态贝叶斯网络的缺失数据进行预测,该算法只适用于所有观测节点是相互独立的网络,却不能处理观测节点有依赖关系网络的缺失数据。针对该算法的这一缺陷,提出了改进的前向信息修补算法,在分析离散动态贝叶斯网络的缺失数据具有二种基本形式的基础上,推导出了每种形式的相应预测公式。继而构建了用于识别威胁源离散动态贝叶斯网络的模型。仿真实验验证了改进的前向信息修补算法的有效性。 The missing data on Discrete Dynamic Bayesian Networks(DDBNs) can be predicted by the forwards information repairing algorithm,however,this algorithm can only be applied to the networks whose observed nodes are independent each other,but it can't handle the missing data on the networks whose observed nodes are dependent.To overcome its disadvantage,we proposed an improved forwards information repairing algorithm.After analyzing that the missing data on DDBNs have two basic forms,we deduced the corresponding prediction formulation for each form,next constructed menace identifying model of DDBNs.It's proved by the simulation experiment that the improved forwards information repairing algorithm is more efficient.
出处 《火力与指挥控制》 CSCD 北大核心 2012年第2期199-203,共5页 Fire Control & Command Control
基金 国家自然科学基金资助项目(60774064)
关键词 前向信息修补算法 数据修补 目标识别 离散动态贝叶斯网络 威胁源 forwards information repairing algorithm data completion target recognition discrete dynamic Bayesian networks menaces
作者简介 作者简介:陈海洋(1967-),男,陕西西安人,博士研究生,研究方向:先进控制理论及应用。
  • 相关文献

参考文献12

  • 1高晓光,陈海洋,史建国.变结构动态贝叶斯网络的机制研究[J].自动化学报,2011,37(12):1435-1444. 被引量:20
  • 2JerzyWGB,MingH.AComparisionofSeveralApproachestoMissingAttributeValuesinDataMining[C] //2ndInternationalConferenceonRoughSetsandCurrentTrendsinComputing,London,UK:Springer-Verlag,2000:378-385.
  • 3ZhangWX.AssociationbasedMultipleImputationinMultivariateDatasets:ASummary[C] //2000IEEE16thInternationalConferenceonDataEngineering(ICDE'00),2000:310.
  • 4LittleRJA,RubinDB.StatisticalAnalysiswithMissingData[M].2thEdition,NewYork:JohnWiley,2002.
  • 5王国胤.Rough理论与知识获取[M].西安:西安交通大学出版社,2001..
  • 6TitteringtonDM.UpdatingaDiagnosticSystemusingUnconfirmedCases[J].Appl.Statist.,1976,25:238-247.
  • 7LauritzenSL.TheEMAlgorithmforGraphicalAssociationModelswithMissingData[J].ComputationalStatisticsandDataAnalysis,1995,19:191-201.
  • 8GermanS,GemanD.StochasticRelaxation,GibbsDistributions,andtheBayesianRestorationofImages[J].IEEETrans.OnPatternAnalysisandMachineIntelligence,1984,6:721-742.
  • 9ChenhY,GaoXG,ZhengJS.AKindofDataRepairingforMissingDataofDiscreteDynamicBayesianNetworks[C] //5thInternationalConferenceonNaturalComputation(ICNC'09),2009,6:47-51.
  • 10ChenHY,GaoXG.ShipRecognitionBasedonImprovedForwards-backwardsAlgorithm[C] //6thInternationalConferenceonFuzzySystemsandKnowledgeDiscovery,2009,5:509-1630.

二级参考文献33

  • 1潘泉,于昕,程咏梅,张洪才.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615. 被引量:188
  • 2史建国,高晓光.离散动态贝叶斯网络的直接计算推理算法[J].系统工程与电子技术,2005,27(9):1626-1630. 被引量:36
  • 3郭小宾,王壮,胡卫东.基于贝叶斯网络的目标融合识别方法研究[J].系统仿真学报,2005,17(11):2713-2716. 被引量:18
  • 4高晓光,史建国.变结构离散动态贝叶斯网络及其推理算法[J].系统工程学报,2007,22(1):9-14. 被引量:22
  • 5Liao X J, Bao Z. Radar target recognition based on pa rameterized high resolution range profiles[J]. Internation al Journal of Pattern Recognition and Artificial Intelligence, 2000, 14(7):979- 986.
  • 6Khanteymoori A R, Homayounpour M M, Menhaj M B. Speaker identification in noisy environment using dynamic Bayesian networks[C]//Proceedings of 14th International CSI Computer Conference. 2009:601- 606.
  • 7Warner H R, Toronto A F, Veasey L G, et al. A mathematical approach to medical diagnosis application to congenital heart disease[J]. Journal of the American Medical Association, 1961, 177: 177-184.
  • 8Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers[J].Machine Learning, 1997, 29(2/3): 131- 163.
  • 9Cheng J, Greiner R. Comparing Bayesian network classifiers[C]//Proceedings of 15th Conference on Uncertainty in Artificial Intelligence. 1999: 101-108.
  • 10Murphy K P. Dynamic Bayesian network: representation, inference and learning[D]. Berkeley:Computer Science, University of California, Berkeley, 2002.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部